elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Predicting Complex Time Series Using Knowledge Based Hybrid Reservoir Computing

Baur, Sebastian und Räth, Christoph und Duncan, Dennis (2023) Predicting Complex Time Series Using Knowledge Based Hybrid Reservoir Computing. Dynamic Days Europe 2023, 2023-09-03 - 2023-09-08, Naples, Italy.

[img] PDF
3MB

Kurzfassung

Tremendous advances in predicting the behavior of complex systems have been made in recent years by applying machine learning. Standard machine learning techniques, like the commonly used Reservoir Computing (RC), are by default purely data-driven which, while generally useful, is suboptimal for cases where some approximate model of the underlying system is known. Adding this additional system knowledge into the data driven techniques gives rise to hybrid approaches, improving their overall prediction quality. Doan et al. introduced such a physics-informed, "output-hybrid", approach for RC, which uses approximations of the systems' true physical equations in order to fine-tune the RC output matrix in a second training phase.\\ Another, "full-hybrid", approach was introduced by Pathak et al. where, in contrast to the simpler output-hybrid approach, the physical knowledge becomes an integral part of the hybrid RC architecture by augmenting the reservoir's input with an "input-hybrid" approach at each step of the calculation. Here, we compare the different hybrid approaches on a variety of commonly known three dimensional chaotic systems. We show that the simpler output-hybrid approach matches the full-hybrid and beats the input-hybrid approach for most reasonable systems with the additional advantages of being more interpretable and resulting in a significantly higher prediction quality for inaccurate models.

elib-URL des Eintrags:https://elib.dlr.de/198479/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Predicting Complex Time Series Using Knowledge Based Hybrid Reservoir Computing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Baur, SebastianSebastian.Baur (at) dlr.dehttps://orcid.org/0000-0003-1924-8009NICHT SPEZIFIZIERT
Räth, ChristophChristoph.Raeth (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Duncan, DennisLMUNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 September 2023
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Machine Learning, Reservoir Computing, Complex Systems
Veranstaltungstitel:Dynamic Days Europe 2023
Veranstaltungsort:Naples, Italy
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:3 September 2023
Veranstaltungsende:8 September 2023
Veranstalter :Lucia Russo
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D KIZ - Künstliche Intelligenz
DLR - Teilgebiet (Projekt, Vorhaben):D - PISA
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für KI-Sicherheit
Hinterlegt von: Baur, Sebastian
Hinterlegt am:25 Okt 2023 10:19
Letzte Änderung:24 Apr 2024 20:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.