KNOWLEDGE BASED RESERVOIR COMPUTING

Sebastian Baur 2023-09-04

2

Reservoir Computing

Reservoir Computing

Update the reservoir state r(t):

 $\mathbf{r}(t + \Delta t) = \tanh(\mathbf{A} \mathbf{r}(t) + \mathbf{W}_{in}\mathbf{x}(t) + \mathbf{b})$

Map r(t) onto the output y(t):

 $\mathbf{y}(t) = \mathbf{W}_{out} \mathbf{r}(t)$

Optimize W_{out} via Ridge regression. Minimize:

 $\sum_{t=-T}^{0} \| W_{out} r(t) - y_R(t) \|^2 + \beta \| W_{out} \|^2$ $y_R(t): \text{ known real output}$ $\beta: \text{ regularization parameter}$

 W_{out} is then obtained via:

$$\boldsymbol{W}_{out} = \boldsymbol{y}^{\mathrm{T}} \boldsymbol{r} (\boldsymbol{r}^{\mathrm{T}} \boldsymbol{r} + \boldsymbol{\beta} \boldsymbol{I})^{-1}$$

Sebastian Baur, DLR KI-EXE, 2023-09-04

But what if you already have a decent model of your system?

Hybrid Reservoir Computing

8

Pathak et al., Chaos, 2018

Combine Model-Based and RC-based Predictions

Sebastian Baur, DLR KI-EXE, 2023-09-04

Adding Errors to our KBM

 $\dot{x}(t) = \boldsymbol{\sigma}(y - x)$ $\dot{y}(t) = x(\rho - z) - y$ $\dot{z}(t) = xy - \beta z$

 ρ is modified to $\tilde{\rho} = 28(1+\epsilon)$

Hybrid RC for the Lorenz System

Multiple Chaotic Systems

Chen

Rössler

WINDMI

System	Eq.	€-param
Lorenz-63	(A1)	ρ
Chen	(A2)	а
ChuaCircuit	(A3)	α
DoubleScroll	(A4)	a
Halvorsen	(A5)	а

System	Eq.	<i>ɛ</i> -param
Roessler	(A6)	С
Rucklidge	(A7)	К
Thomas	(A8)	b
Windmi	(A9)	а
KS	(17)	а

14

Hybrid RC for Multiple Chaotic Systems

Hybrid RC for Multiple Chaotic Systems

But what if your knowledge based model is just really bad?

Using a Horrible KBM

 $K_{\sin}(\boldsymbol{u}(t)) = \sin(\boldsymbol{u}(t))$

Interpretability?

Sebastian Baur, DLR KI-EXE, 2023-09-04

Interpretability

d) $\varepsilon = 1$

3

Conclusion

Sebastian Baur, DLR KI-EXE, 2023-09-04

Conclusion

- Input hybrid (IH), output hybrid (OH), and full hybrid (FH), all outperform non-hybrid RC for sufficiently accurate models.
- For accurate models, OH and FH results are equivalent and significantly outperform the IH results, especially for smaller reservoir sizes.
- For totally inaccurate models the predictive capabilities of IH and FH may decrease drastically, while the OH architecture remains as accurate as the purely data-driven results.
- Output hybrid basically always better than input hybrid and about as good as full hybrid for good, and preferable for bad knowledge based models.
- OH allows for the separation of the reservoir and the model contributions to the output predictions.
- OH approach is the most favorable architecture for hybrid reservoir computing, when taking accuracy, interpretability, robustness to model error, and simplicity into account.
- Outlook: Hybrid-NG-RC, Hybrid-Minimal-RC, Real Data

Special Thanks:

- Christoph Räth
- Dennis Duncan: First author of the paper, but sadly couldn't be here today.
- "Optimizing the combination of datadriven and model-based elements in hybrid reservoir computing"
 Soon to be published in Chaos
 - Soon to be published in Chaos

THANK YOU FOR YOUR ATTENTION

