Stark, Thomas and Stefan, Valentin and Wurm, Michael and Spanier, Robin and Taubenböck, Hannes and Knight, Tiffany (2023) YOLO object detection models can locate and classify broad groups of flower-visiting arthropods in images. Scientific Reports, 13 (16364), pp. 1-11. Nature Publishing Group. doi: 10.1038/s41598-023-43482-3. ISSN 2045-2322.
PDF
- Published version
2MB |
Official URL: https://www.nature.com/articles/s41598-023-43482-3
Abstract
Develoment of image recognition AI algorithms for flower-visiting arthropods has the potential to revolutionize the way we monitor pollinators. Ecologists need light-weight models that can be deployed in a field setting and can classify with high accuracy. We tested the performance of three deep learning light-weight models, YOLOv5nano, YOLOv5small, and YOLOv7tiny, at object recognition and classification in real time on eight groups of flower-visiting arthropods using open-source image data. These eight groups contained four orders of insects that are known to perform the majority of pollination services in Europe (Hymenoptera, Diptera, Coleoptera, Lepidoptera) as well as other arthropod groups that can be seen on flowers but are not typically considered pollinators (e.g., spiders-Araneae). All three models had high accuracy, ranging from 93 to 97%. Intersection over union (IoU) depended on the relative area of the bounding box, and the models performed best when a single arthropod comprised a large portion of the image and worst when multiple small arthropods were together in a single image. The model could accurately distinguish flies in the family Syrphidae from the Hymenoptera that they are known to mimic. These results reveal the capability of existing YOLO models to contribute to pollination monitoring.
Item URL in elib: | https://elib.dlr.de/198452/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | YOLO object detection models can locate and classify broad groups of flower-visiting arthropods in images | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 29 September 2023 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Scientific Reports | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 13 | ||||||||||||||||||||||||||||
DOI: | 10.1038/s41598-023-43482-3 | ||||||||||||||||||||||||||||
Page Range: | pp. 1-11 | ||||||||||||||||||||||||||||
Publisher: | Nature Publishing Group | ||||||||||||||||||||||||||||
ISSN: | 2045-2322 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | AI, deep learning, object detection, pollination, ecology | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||
Deposited By: | Stark, Thomas | ||||||||||||||||||||||||||||
Deposited On: | 26 Oct 2023 11:33 | ||||||||||||||||||||||||||||
Last Modified: | 27 Nov 2023 10:39 |
Repository Staff Only: item control page