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YOLO object detection models can 
locate and classify broad groups 
of flower‑visiting arthropods 
in images
Thomas Stark 1*, Valentin Ştefan 2,3, Michael Wurm 1, Robin Spanier 1, 
Hannes Taubenböck 1,4 & Tiffany M. Knight 2,3,5

Develoment of image recognition AI algorithms for flower‑visiting arthropods has the potential 
to revolutionize the way we monitor pollinators. Ecologists need light‑weight models that can 
be deployed in a field setting and can classify with high accuracy. We tested the performance of 
three deep learning light‑weight models, YOLOv5nano, YOLOv5small, and YOLOv7tiny, at object 
recognition and classification in real time on eight groups of flower‑visiting arthropods using open‑
source image data. These eight groups contained four orders of insects that are known to perform the 
majority of pollination services in Europe (Hymenoptera, Diptera, Coleoptera, Lepidoptera) as well 
as other arthropod groups that can be seen on flowers but are not typically considered pollinators 
(e.g., spiders‑Araneae). All three models had high accuracy, ranging from 93 to 97%. Intersection over 
union (IoU) depended on the relative area of the bounding box, and the models performed best when 
a single arthropod comprised a large portion of the image and worst when multiple small arthropods 
were together in a single image. The model could accurately distinguish flies in the family Syrphidae 
from the Hymenoptera that they are known to mimic. These results reveal the capability of existing 
YOLO models to contribute to pollination monitoring.

Most crops and wild plant species rely on interactions with animal pollinators for  reproduction1. Pollination is 
therefore a critical ecosystem services, which has an annual market value of more than $237  billion2. The threats 
to pollinators are not fully understood, which has led to urgent calls for more studies aimed at understanding 
how pollinators and plant-pollinator interactions change across environmental gradients (EU Pollinators Initia-
tive, EC 2018).

Currently, most data on plant-pollinator interactions are acquired from field observations and collections 
of pollinators contacting reproductive parts of flowers. The identification of pollinators is a time-consuming 
step in this research. For example, it is typical for pollination ecologists to spend weeks in the field collecting 
observational data and arthropods, and many weeks or months afterwards pinning, sorting and identifying 
those arthropods using microscopy or DNA  barcoding2–4. AI tools, in particular convolutional neural networks 
(CNNs) for image classification, have the potential to allow for efficient identification of plant-pollinator inter-
actions from field images. Training these tools require a vast amount of annotated data, which can be met with 
the growing amount of digital data from citizen science platforms and media platforms that have been curated 
by taxonomic  experts5,6.

Developments of applications for automated recognition have resulted in some outstanding products for 
plant identification, due to the consolidation of different machine learning  methods7,8, the increase in image 
data  availability9, and advances in computer hardware over the past decade. For example, the Flora  Incog nita app 
can currently distinguish more than 16,000 European plant species from images taken by citizens. Like plants, 
automated arthropod identification is challenged by the vast number of taxa to be classified, by the complexity 
of image backgrounds and variability in shooting angles, and by the fact that individuals of the same taxa vary in 
their morphology and individuals of different taxa sometimes look very  similar6,8. Arthropod identification is also 
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challenged by dealing with multiple individuals that overlap in the same image, different lighting  conditions6,10,11, 
arthropods that blend in cluttered backgrounds, individuals that move very fast and/or are hidden by parts of 
 plants12, and dramatic size differences between arthropod species.

Deep learning has revolutionized computer vision in many fields of natural sciences, such as  medicine13,14, 
and remote  sensing15–17. In the field of automatic identification of arthropods, convolutional neural networks 
(CNN) used for image classification are still in a pre-mature phase. However, it is acknowledged that they have 
the potential to revolutionize data  collection11,18. The development of AI tools for arthropod classification started 
with a focus on particular taxa and/or the identification of museum specimens with a homogeneous image 
background. For example, pictures taken of arthropod wings in controlled settings (i.e., under the microscope) 
can identify several groups of  bees19,  butterflies20,21 and syrphid  flies22. The application of CNNs on arthropod 
identification ranges from a few to multiple taxa and considers a growing number of images, for example, nine 
tiger beetles genera and 380  images23, nine groups of arthropods and nearly 2000  images24, ten butterfly species 
and nearly 18,000  images21, 36 bumble bee species and nearly 90,000  images6. Progress in this direction was 
carried out also in the citizen science and private sectors with the ongoing research in mobile apps like Seek, 
ObsId entify, NABU Insek tenso mmer and Googl e Lens.

Recent developments in camera hardware and image recognition have been applied to study insect pollina-
tion, typically focused on a single plant species or a single pollinator species. For example, Bjerge and  colleagues25 
use a custom camera system and CNNs to capture images and classify broad groups of arthropods that visit 
plants in the genus Sedum. Ratnayake and  colleagues12,26 used Raspberry Pi hardware and CNNs to track the 
movement of individual honeybees, allowing for spatial monitoring and behavioral analysis of this important 
pollinator species in an agricultural setting. Several studies have introduced low-cost and open-source camera 
trap systems that are enabling efficient collection of insect images in field  settings27–29. However, there is a need 
to develop tools that can classify flower-visiting arthropods that visit a wide variety of flowers in a broad geo-
graphic region, such as Europe.

In Europe, four orders of arthropods perform the vast majority of pollination: Hymenoptera (bees and wasps), 
Diptera (flies), Lepidoptera (butterflies and moths), and Coleoptera (beetles)30. Further, there are four other taxa 
of arthropods that are more rarely seen on flowers and are not typically considered pollinators because they visit 
flowers so infrequently and/or deliver little pollen per  visit31. These include the order Orthoptera (grasshoppers 
and leafhoppers), the order Hemiptera (true bugs), the order Araneae (spiders), and the family Formicidae 
(ants). Thus, it is necessary to consider the eight groups of arthropods to classify flower visitors as seen in Fig. 1.

In this study, we test whether a deep learning approach allows to localize and classify arthropods into these 
eight groups with sufficient accuracy. Therefore, we evaluated the performance of three light-weight object detec-
tion algorithms. The  YOLO32 family of object detection algorithms offers multiple versions of its algorithm vary-
ing in a wide variety of use cases. In our experimental set-up, three different YOLO models were trained on more 
than 17,000 annotated images with the location of each arthropod being marked by bounding box coordinates. 
Using YOLO for object detection provides us with the benefit of detecting several arthropods in a single image, 
which is one of the reasons we want to explicitly test how well this task is performed. Additionally, we expected 

Araneae34 Coleoptera35 Diptera36 Hemiptera37

Hymenoptera F.38 Hymenoptera39 Lepidoptera40 Orthoptera41

Figure 1.  Example images for the eight groups in our dataset used for classification.

https://www.inaturalist.org/pages/seek_app
https://observation.org/apps/obsidentify/
https://www.nabu.de/tiere-und-pflanzen/aktionen-und-projekte/insektensommer/mitmachen/30048.html
https://lens.google/
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that one of the more difficult classifications will be of Dipterans in the family Syrphidae (hoverflies), which have 
mimicry of bees and wasps (Hymenoptera)33. Thus, we performed a separate test to see how well our model dif-
ferentiates this family of flies from Hymenoptera on 1000 annotated images of hoverflies.

Methods
Dataset
The dataset covers the eight groups as seen in Fig. 1 and in Table 1: spiders (Araneae), beetles (Coleoptera), true 
flies (Diptera), true bugs (Hemiptera), bees and wasps (Hymenoptera), ants (Hymenoptera Formicidae), moths 
and butterflies (Lepidoptera), and crickets and grasshoppers (Orthoptera). Coleoptera, Diptera, Hymenoptera 
and Lepidoptera represent the most important pollinator groups of the dataset. These four orders make up the 
majority (aprox. 98%) of arthropods that visit  flowers30. Ants (Hymenoptera in the family Formicidae) have been 
documented as pollinators in a few case studies, but have an insignificant role in pollination for most plants and 
can even be  detrimental42. Likewise, Araneae, Hemiptera and Orthoptera might rarely be seen on flowers but 
will not play a significant role as pollinators, and can be detrimental as predators of  pollinators43,44. Therefore, 
including these orders into the dataset prevents models from confusing them with the pollinator groups.

We used curated images indexed by the Global Biodiversity Information Facility (GBIF) database. A signifi-
cant proportion of the images (96.77%) are sourced from the citizen science platforms, iNatu ralist and Obser 
vation. org, which account for 53.86% and 42.91% of the contributions respectively. We extracted the occurrence 
data for our eight groups, and only kept the occurrence data that offered URLs with images. We then curated the 
datasets, focusing on species marked as present in Europe. For the orders Diptera, Coleoptera, Hymenoptera 
and Lepidoptera, we only sampled from known families of flower visitors. There was an uneven distribution of 
images across families within an order and across species within a family. For example, within the order Diptera, 
the Syrphidae family has many more images indexed by GBIF than other Dipteran families. Within the Syrphidae 
family, the common and widespread species Eristalis tenax is overrepresented compared to other species. Our 
methods therefore aimed to capture the taxonomic (and likely morphological) diversity of images that capture the 
representative range for each order, and to use random sampling in order to avoid selection biases. Specifically, 
for families consisting of more than 200 species, we randomly selected 200 species, and randomly choose one 
image per species. For families with fewer than 200 species, we randomly selected multiple images per species.

There is a high variability in the dataset with images of arthropods from different angles, exposure, focus, 
framing sizes and focal length. Also, there are various image backgrounds from artificial to natural ones. These 
characteristics are representative of those found in the iNaturalist  dataset45. Images are captured using a variety 
of devices, from professional cameras to mobile phones. The citizen science platforms encourage users to crop 
their raw images such that arthropods appear more prominent. However, the degree to which this is applied 
varies among users, resulting in images where the arthropods occupy a significant portion of the image area in 
some cases, and a smaller portion in others. This introduces an inherent variability in the framing or ‘crop level’ 
of the insects across the dataset. The average area occupied by the insects, expressed as a proportion of the total 
image area (relative bounding box area), is 0.34 (Table 1), with an interquartile range between 0.10 and 0.54. 
Thus, our methods should allow for results that can be effectively extrapolated to further images captured by 
citizen scientists.

Each arthropod in these images was manually annotated with a bounding box by entomologists using the 
open source VIA Annotation  program46. We discarded images that were identified incorrectly, showed larva and 
pupa stages, the arthropod was missing, and/or did not show the entire body of the arthropod. Our initial dataset 
consisted of 20,505 images of which we discarded 2,797 images. Table 1 shows the final sample sizes for training, 
validation, and testing. We split our dataset into a group-balanced validation and testing dataset. We used 210 
images per group for testing and validation, and remaining images for training. The testing dataset was never 
shown to the object detection architecture, while the validation dataset was used for monitoring the model per-
formance during the training procedure and for determining when to stop training in order to avoid overfitting.

Table 1.  The sample sizes in the dataset used for training and testing the object detection algorithm. While the 
training dataset shows some imbalance in its image count of the groups, the validation and testing dataset are 
sampled evenly for each group.

Group Images Bounding boxes Relative bounding box size Validation images Test images Training images

Araneae 1523 1578 0.38 210 210 1103

Coleoptera 2336 2560 0.23 210 210 1916

Diptera 2401 2468 0.49 210 210 1981

Hemiptera 1711 2247 0.26 210 210 1291

Hymenoptera F. 1051 3368 0.08 210 210 631

Hymenoptera 2461 2543 0.39 210 210 2041

Lepidoptera 4577 4749 0.36 210 210 4156

Orthoptera 1649 1705 0.48 210 210 1229

17,709 21,218 0.34 1680 1680 14,348

https://www.inaturalist.org
https://www.observation.org
https://www.observation.org
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YOLO
We assess the potential of three one-stage object detection models. We chose light-weight models with the inten-
tion that future applications will require the algorithms to run on mobile devices. Simultaneously, a trade-off must 
be made in which the detection model must be capable of performing successful classification tasks.  YOLO32 
is a one stage object detector, since it can integrate object classification and object location into one network 
architecture. The YOLO object detection algorithm divides the input image into SxS grids and each grid cell is 
responsible for predicting the object centered in that grids cell. Each grid cell predicts a number of bounding 
boxes and their corresponding confidence scores. Formally, confidence scores for each prediction are defined. 
This indicates the likelihood of objects and shows confidences of its prediction. At the same time, regardless of 
the number of boxes, conditional probabilities are predicted in each grid cell. It should be noted that only the 
contribution from the grid cell containing an object is calculated. While the original YOLO version was capable 
of real time detection, one of its biggest drawbacks was its performance on small objects.  YOLOv247 introduced 
batch normalization, anchor points and the use of higher resolution images.  YOLOv348 built upon previous 
models by adding an object score to bounding box prediction, added connections to the backbone network 
layers and made predictions at three separate levels of granularity to improve performance on smaller objects. 
 YOLOv449 introduced further improvements in its backbone, feature aggregation, and its head for the detection 
step. Furthermore a set of data augmentation and activation functions could improve results.

YOLOv5
YOLOv550 was originally developed in PyTorch and not DarkNet like its predecessors. YOLOv5 offers multiple 
models, the difference between them is the trade-off between the size of the model and inference time. There are 
six different architectures specific to YOLOv5 (nano, small, medium, large and extra-large), they are distinguished 
from each other by the depth of the network, primarily the backbone network with the number of convolutional 
layers. In YOLOv5 the cross stage partial (CSP) networks are used as a backbone to extract features. In YOLOv5 
 PANet51 is used for the neck to get feature pyramids. The model head is mainly used to perform the final detec-
tion part. YOLOv5 applies anchor boxes on features and generates the final output vectors with probabilities, 
an objectness score, and bounding boxes. YOLOv5 authors decided to use a combination of Leaky ReLU and 
Sigmoid activation functions. In YOLOv5, the default optimization function for training is stochastic gradient 
descent (SGD) and the default loss function used is the binary cross entropy with logits.

YOLOv7
In  YOLOv752 multiple incremental improvements were made from its previous versions. Extended efficient layer 
aggregation (E-ELAN) is used as a computational block, which enables quicker back-propagation and speeds up 
training and inference time. YOLOv7 scales the network depth and width while concatenating layers together. 
Reparameterization techniques, which involve averaging a set of model weights, creates models that are more 
robust in learning patterns. The YOLOv7 authors use gradient flow propagation paths to see which modules in 
the network should use reparameterization strategies and which should not. For the final predictions the authors 
use an auxiliary head with different levels of supervision, settling on a coarse to fine definition where supervision 
is passed back from the lead head at different granularities.

Training set‑up
We selected three models YOLOv5n (nano), YOLOv5s (small), and YOLOv7t (tiny) to compare to each other. 
All three models offer less than ten million trainable parameters and are capable for real time detection even on 
CPUs and low end hardware GPUs. The models were trained using an input image size of 640*640 pixels in order 
to use a batch size of eight for all models, which was the highest value allowed by the available hardware. We 
decided not to train the models from scratch, but to use pre-trained weights from the  COCO53 dataset which are 
provided with each YOLO repository, since this can result in more robustness in the model  performance54. All 
models are trained using three epochs to “warmup” the optimizer, since this can help with faster  convergence55 
and with the same set of hyper-parameters for 300 epochs (See supplementary information Table 1), while the 
best model is determined by its fitness using a weighted average of the mean average precision at various intersec-
tion over union thresholds. To evaluate our models we used the following metrics: overall accuracy, precision, 
recall, intersection over union (IoU), and the false positive rate. The confusion matrix is formed to calculate group 
specific metrics. All three models provide a prediction confidence level and an IoU score threshold. Using the 
findings for the overall accuracy, the best possible combination was identified using a grid search from 10% to 
90% in 10% increments for both thresholds (See Figs. 1–4 supplementary information). We report the accuracies 
depending on the highest overall accuracies achieved by the threshold grid search. The computations for this 
work were done using resources from the Leipzig University Computing Center which granted us quota access 
to compute nodes with eight Nvidia RTX2080Ti 11 GB each.

Results
We discovered that, in general, all three models (YOLOv5n, YOLOv5s, and YOLOv7t) were able to distinguish 
the order of flower visitors in images with high accuracies of up to 96 percent. As a result, we show that this 
method of categorization is capable of both finding the location of an arthropod within a picture and identify-
ing it to its group.

For YOLOv5n the highest overall accuracy acheived 94.50%; this was achieved with a combination of a 20% 
confidence and 50% IoU threshold. YOLOv5s achieved 96.24% accuracy with a combination of a 30% confi-
dence and 60% IoU threshold. YOLOv7t achieved 95.08% accuracy with a combination of 10% confidence and 
30% IoU threshold. Despite their modest model sizes of less than 10 million trainable parameters, all models, 
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YOLOv5n, YOLOv5s, and YOLOv7t, were able to recognize the order of flower visitors in images. YOLOv5s 
is approximately 3.8 times larger than YOLOv5n and achieves a 1.7% greater overall accuracy. YOLOv5s and 
YOLOv7t are nearly the same size and have an overall accuracy difference of less than 1.2%. The remaining accu-
racy metrics are shown in Table 2. Precision indicates how accurate predictions are, whereas recall measures the 
proportion of ground truth instances that were correctly identified by the model. The false positive rate (FPR) 
is the proportion of negative cases in data that were incorrectly recorded as positive. Note that YOLOv5n and 
YOLOv7t get comparable results, with the exception of the higher recall score for YOLOv7t. The IoU is deter-
mined for all true positives by taking the mean of all predicted bounding boxes in an image. All YOLO versions 
scored a mean IoU of above 78%.

The confusion matrix of the predictions on the test dataset for each of the three models is shown in Fig. 2. 
The matrix shows the eight groups in our dataset, in addition a background group (Bg.) is added to count false 
positives and false negatives as well. We show the confusion matrix using the confidence and Iou threshold from 
Table 2 scoring the highest overall accuracy. The confusion matrix visualizes and summarizes the classification 
of the algorithm’s performance, with each row of the matrix representing examples in an actual group and each 
column representing occurrences in a predicted group. Since there may be many label bounding boxes for a 
given picture, the total number of images in a row may exceed 210 even if each row contains exactly 210 images 
from the test dataset in Table 1. All three YOLO models in Fig. 2, YOLOv5n (Fig. 2a), YOLOv5s (Fig. 2b), and 
YOLOv7t (Fig. 2c), exhibit similar behavior, with the diagonal indicating true positive scores always greater than 
75%. It is worth noting that all three models had some missed detections for the Hemiptera and Hymenoptera 
Formicidae groups. As seen in Table 1 this can be linked to small bounding boxes and several overlapping labels 
per picture. Both groups share noticeable smaller bounding boxes as well as a higher ratio of bounding boxes per 
image compared to other groups. As shown in the first row of the confusion matrix in Fig. 2c, YOLOv7t suffers 
from more false positives than its YOLOv5 counterparts.

Aside from comparing metrics between YOLO versions, we also look closely at outcomes for detecting several 
objects in a single image and images with small bounding box labels as seen in Fig. 3. The ability to recognize 
many arthropods of various types in a single image is a significant advantage of employing object detection 
rather than scene classification approaches. In these challenging situations, we particularly examine the IoU 
metric as the accuracy of the bounding box placement as a very relevant indicator of the models performance. 
The results on images grouped by their number of labels per image is shown in Fig. 3a, and the results for predic-
tions depending on the relative area of its bounding box in Fig. 3b. In Fig. 3a the IoU score is shown for images 
with the number of detections ranging from one to ten, while the last group consists of all images with more 
than ten detections. In Fig. 3b the IoU score is shown depending on the relative area of the bounding box in 
relations to its image size, the higher the value of BBarea the larger is the bounding box. The IoU measurements 
demonstrate a significant drop in their values when the number of labels per image increase. The same effect can 
be observed when dealing with small bounding boxes. In Fig. 3c we compare the number of bounding boxes per 
images and the relative area of the bounding boxes is shown. We can see that a larger number of bounding boxes 

Table 2.  Overview on all metrics of the three models YOLOv5n, YOLOv5s, and YOLOv7t.

Number parameters 
(m)

CPU inference [sec/
img]

GPU inference [sec/
img]

Conf. & IoU 
Threshold Overall accuracy Precision Recall False positive rate IoU

YOLOv5n 1.9 0.1893 0.0552 0.2 & 0.5 0.9450 0.8427 0.8305 0.0309 0.7831

YOLOv5s 7.2 0.4833 0.0554 0.3 & 0.6 0.9624 0.9088 0.8692 0.0209 0.8052

YOLOv7t 6.2 0.4047 0.0734 0.1 & 0.3 0.9508 0.8449 0.8907 0.0283 0.8026
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on images also corresponds to a lower relative bounding box size, while larger bounding box areas are typically 
found on images where there is only one single bounding box. It is also worth noting that in Fig. 3b,c the group 
Hymenoptera Formicidae are responsible for the bulk of the smaller bounding boxes, and as a result, they have 
a considerable influence on the distribution of bounding boxes. This is especially noticeable in Fig. 3c, where 
the large circle in the upper left corner highlights the impact.

We carried out an additional test in which we compared the detection results of the family Syrphidae within 
Diptera using the YOLOv7t model. Table 3 shows accuracy metrics for two combinations of confidence and 
IoU thresholds, where the first, using 10% confidence & 30% IoU was used due to scoring the highest overall 
accuracy from Table 2 and the second combination of 30% confidence & 60% IoU, which scores the highest 
overall accuracy for the Syrphidae dataset (See supplementary information Fig. 5). While both experiments 
demonstrated exceptional results, it can be argued that using 30% confidence & 60% IoU was slightly superior, as 
it exhibited a higher level of overall accuracy, precision, and false positive rate, however, both experiments should 
be deemed highly successful as they both correctly classified Syrphidae. Table 4 shows the confusion matrix for 
threshold combination of 30% confidence & 60% IoU. The confusion matrix is computed using the 1061 images 
of Syrphidae, to test whether the YOLOv7t model misclassifies the family into different groups, specifically the 
Hymenoptera order that they mimic. From Table 4 we can see that of the 1061 Syrphidae, only 55 are classified 
as Hymenoptera, which is the highest amount of the misclassified detections, as well as 39 labels of bounding 
box which were not recognized at all. Successful classification examples can be seen in Fig. 4d,f.

In Fig. 4 some of the predictions made by the YOLOv7t model are depicted, including predictions of images 
with multiple arthropods. The figure shows nine images of seven orders from our dataset. While the YOLOv7t 
model correctly classifies all arthropods to its specific group, in cases with a large count of small labels there are 
some false negatives as seen in Fig. 4e,g,h. Figure 4c,d,f shows that the YOLOv7t correctly differentiates between 
Diptera-Syrphidae and Hymenoptera.

Discussion
Identifying flower-visiting arthropods is a challenging task, especially when one considers the trade-off that must 
be made between the amount of processing power necessary and the degree of accuracy that must be achieved 
in order to get acceptable results. The YOLO versions used in this study, v5 and v7, provide several options for 
models that would be suited to this problem. We tested three light-weight models that could be deployed in a 
field setting for automated pollinator monitoring: YOLOv5 with the smallest sizes, “nano” (n) and “small” (s), 
and YOLOv7 with the smallest size, “tiny” (t). We have found that the results of YOLOv5s and YOLOv7t are 

Figure 3.  The figures show results for YOLOv7t, (a) IoU depending on the number of bounding boxes per 
images [nBB], (b) IoU depending on the relative area of the bounding box to the image size [BBarea], and (c) 
counts of the number of bounding boxes in our dataset for each combined category of nBB and BBarea. The size 
and color of each dot represents the number of bounding boxes.

Table 3.  Accuracy metrics using YOLPv7t for classifying images of arthropods in the family syrphidae into 
their appropriate group Diptera using two threshold combinations.

Conf. &

0.1 & 0.3 0.3 & 0.6

OA 0.9655 0.9729

Precision 0.9502 0.9886

Recall 0.9171 0.8954

FPR 0.0748 0.0707

IoU 0.8312 0.8311
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Table 4.  Confusion matrix using YOLOv7t for the family Syrphidae within Diptera for a combination of 10% 
confidence and 30% IoU threshold.

(a) Araneae56 (b) Coleoptera57 (c) Diptera58

(d) Diptera Syrphidae59 (e) Hemiptera60 (f) Hymenoptera61

(g) Hymenoptera Formicidae62 (h) Lepidoptera63 (i) Orthoptera64

Figure 4.  Predictions (blue) and labels (red) for nine images of arthropods in our dataset using the YOLOv7t 
model.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16364  | https://doi.org/10.1038/s41598-023-43482-3

www.nature.com/scientificreports/

quite similar. The parameter counts of YOLOv5s and YOLOv7t are very comparable. YOLOv5n, on the other 
hand, has a much reduced size and this likely explains its lower scores as we found that the number of parameters 
influenced all of the accuracy metrics.

The advantage of using object detection rather than scene classification is not only in determining the loca-
tion of the arthropod on the photos, but also in recognizing several arthropods in one image. This is important 
for the development of future automated pipelines for pollinator monitoring because it allows all individuals 
visiting a flower to be counted and identified. However, we observed that the model performance drops slightly 
when there are multiple arthropods in an image (Fig. 3). This is because models are faced with the challenge of 
small objects, since images with multiple arthropods typically contain smaller bounding boxes than images of 
a single arthropod. When there is only one arthropod to locate in the image, both YOLOv5s and YOLOv7t give 
similar results.

The high accuracy of the model in distinguishing the Syrphidae from Hymenoptera demonstrates the poten-
tial of the model to be a reliable tool. It is a relatively easy job to distinguish between some of the morphologically 
distinct groups in our study, such as Lepidoptera and Coleoptera. However, distinguishing Dipterans in the 
family Syrphidae from Hymenopterans is a challenging task, as Syrphidae mimic the morphological appearance 
of bees and wasps in the order  Hymenoptera65. The high performance of our model in this task suggests great 
promise for future development of models, which will aim to classify each image to the lowest taxonomic level 
that an expert could with high accuracy.

A major challenge in understanding trends and drivers in pollinators and pollination is insufficient monitor-
ing, as our current data is geographically biased and uses inconsistent methodology. Mobilizing citizen scientists 
is one solution that works well for charismatic taxa that are easy to identify, such as butterflies. Indeed, more than 
3000 transects are monitored for butterflies each year by citizens throughout  Europe66,67. However, expanding 
such monitoring to other pollinating taxa is difficult, as most citizens are not interested in learning to distinguish 
amongst Dipteran families or in killing the arthropods they observe so that they can be identified by experts. 
The results presented here are working towards a future in which pollinators and plant-pollination interactions 
are consistently and non-destructively monitored across broad spatio-temporal scales using time-lapse cameras 
set to photograph flowers in the field and then using CNNs to classify arthropods in those images. In Europe, 
such monitoring schemes could be possible in existing distributed networks such as the European Long Term 
Ecosystem Research (eLTER) network. However, it is an open question how well our CNN models developed 
in this manuscript, which use GBIF-indexed images, will perform on classifying images that are collected by 
a time-lapse camera. Testing how well our models perform on such an out-of-sample dataset is an important 
direction for future research.

Object detection algorithms using deep learning have proven to be effective in achieving high accuracy in a 
variety of tasks, making them a popular choice for machine learning practitioners. However, the complexity and 
computational requirements of incredible deep networks can make it challenging to deploy them in real-world 
applications where resources may be limited or the need for quick decision-making is crucial. Given this, it’s 
important to consider deep learning models using fewer trainable parameters that may not have the same level 
of accuracy but are more practical for deployment in the real world. While deeper networks still hold potential 
for improving accuracy, it may be necessary to balance that with considerations of practicality and feasibility in 
real-world settings.

Our study represents a significant advancement in the field of AI-assisted identification of European flower 
visitors, as we encompass a wide range of arthropod taxa in our training data set that occur on a wide variety of 
floral backgrounds (and other complex backgrounds). However, we see this as an initial step in the progress that 
is needed for automated insect identification, as many ecological questions and monitoring aims will require 
identification at lower taxonomic levels. Entomologists that specialize in taxonomy would hypothesize that 
species-level identification might not be possible, as identifying features at the species level are not visible on 
field images, such as features of the genitalia, placement of hairs on the legs, etc. However, traditional convolu-
tional neural networks (CNNs) have the potential to surpass human-level classification in detecting pollinators 
by identifying intricate features and patterns that may elude the human  eye68. Thus, we see testing the potential 
and limits of CNNs for family, genera, and species level identification of insect pollinators as an exciting next 
step in this line of research.

Conclusion
In the near future, object detection will be a vital component of pollinator monitoring, allowing ecologists to 
have near real time data on pollination across broad spatial gradients. To correctly evaluate changes in plant-
pollinator interactions across space and time, it will be essential that we continue to develop this technology, as 
well as data sets that can be utilized for training models. We have shown that the YOLO object detection models 
can be used to classify arthropod orders and localize the arthropods with bounding boxes. Localization is an 
important task to consider for the development of AI applications in pollination ecology because quantifying 
plant-pollinator networks requires also abundance information (counts of individual arthropods). We chose to 
evaluate three different light YOLO models: YOLOv5-nano, YOLOv5-small, and YOLOv7-tiny, which all have 
less than ten million trainable parameters. This is important for the future development of edge AI applications 
in pollination ecology because lighter models can be deployed to run detection in real time on edge devices under 
field conditions, with limited computational power and limited energy supply. The YOLOv5-nano model was 
selected for use as the foundation because it provides the lowest number of parameters while still delivering a 
satisfactory compromise between precision and speed. YOLOv5-small and YOLOv7-tiny models share similar 
number of parameters and, therefore do not differ much in their results. The results scale almost linearly with 



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16364  | https://doi.org/10.1038/s41598-023-43482-3

www.nature.com/scientificreports/

the number of parameters. Therefore, a suitable model type can be selected from our tests depending on the 
capabilities of future low-cost hardware setup to monitor pollination.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request. The scripts to run all experiments are publicly available through our GitHub page 
stark-t/ PAI.
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