Duncan, Dennis und Räth, Christoph (2023) Optimizing the combination of data-driven and model-based elements in hybrid reservoir computing. Chaos, 33. American Institute of Physics (AIP). doi: 10.1063/5.0164013. ISSN 1054-1500.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://pubs.aip.org/aip/cha/article/33/10/103109/2915546/Optimizing-the-combination-of-data-driven-and?searchresult=1
Kurzfassung
Hybrid reservoir computing combines purely data-driven machine learning predictions with a physical model to improve the forecasting of complex systems. In this study, we investigate in detail the predictive capabilities of three different architectures for hybrid reservoir computing: the input hybrid (IH), output hybrid (OH), and full hybrid (FH), which combines IH and OH. By using nine different threedimensional chaotic model systems and the high-dimensional spatiotemporal chaotic Kuramoto–Sivashinsky system, we demonstrate that all hybrid reservoir computing approaches significantly improve the prediction results, provided that the model is sufficiently accurate. For accurate models, we find that the OH and FH results are equivalent and significantly outperform the IH results, especially for smaller reservoir sizes. For totally inaccurate models, the predictive capabilities of IH and FH may decrease drastically, while the OH architecture remains as accurate as the purely data-driven results. Furthermore, OH allows for the separation of the reservoir and the model contributions to the output predictions. This enables an interpretation of the roles played by the data-driven and model-based elements in output hybrid reservoir computing, resulting in higher explainability of the prediction results. Overall, our findings suggest that the OH approach is the most favorable architecture for hybrid reservoir computing, when taking accuracy, interpretability, robustness to model error, and simplicity into account.
elib-URL des Eintrags: | https://elib.dlr.de/198138/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Optimizing the combination of data-driven and model-based elements in hybrid reservoir computing | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 6 Oktober 2023 | ||||||||||||
Erschienen in: | Chaos | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 33 | ||||||||||||
DOI: | 10.1063/5.0164013 | ||||||||||||
Verlag: | American Institute of Physics (AIP) | ||||||||||||
ISSN: | 1054-1500 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Prediction, Physics inspired AI, Chaos, Reservoir Computing | ||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - PISA | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||
Hinterlegt von: | Räth, Christoph | ||||||||||||
Hinterlegt am: | 17 Okt 2023 11:31 | ||||||||||||
Letzte Änderung: | 30 Jan 2024 10:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags