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ABSTRACT

Hybrid reservoir computing combines purely data-driven machine learning predictions with a physical model to improve the forecasting
of complex systems. In this study, we investigate in detail the predictive capabilities of three different architectures for hybrid reservoir
computing: the input hybrid (IH), output hybrid (OH), and full hybrid (FH), which combines IH and OH. By using nine different three-
dimensional chaotic model systems and the high-dimensional spatiotemporal chaotic Kuramoto–Sivashinsky system, we demonstrate that
all hybrid reservoir computing approaches significantly improve the prediction results, provided that the model is sufficiently accurate. For
accurate models, we find that the OH and FH results are equivalent and significantly outperform the IH results, especially for smaller reservoir
sizes. For totally inaccurate models, the predictive capabilities of IH and FH may decrease drastically, while the OH architecture remains
as accurate as the purely data-driven results. Furthermore, OH allows for the separation of the reservoir and the model contributions to
the output predictions. This enables an interpretation of the roles played by the data-driven and model-based elements in output hybrid
reservoir computing, resulting in higher explainability of the prediction results. Overall, our findings suggest that the OH approach is the
most favorable architecture for hybrid reservoir computing, when taking accuracy, interpretability, robustness to model error, and simplicity
into account.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0164013

The forecasting of physical systems has traditionally relied on
a system of equations derived to model the process to be pre-
dicted. This approach reaches its limitations when the under-
lying processes are nonlinear, particularly in situations where
only imperfect models are at hand. On the other hand, the
application of purely data-driven artificial intelligence (AI)
based forecasting methods has led to great progress in fore-
casting complex dynamical systems. In recent studies using
reservoir computing as the data-driven machine learning ele-
ment, it was shown that a hybrid ansatz combining both
approaches improves the prediction results. Here, we compare
different ways of combining the model-based and data-driven
elements within the hybrid method. We find that the pre-
diction quality significantly depends on how the data-driven

and model-based elements are combined with each other. Our
experimental findings show that the most accurate, reliable
with respect to inaccuracies in the model, and interpretable
results are obtained when the hybrid architecture combines
the data-driven and model-based elements solely at the output
layer.

I. INTRODUCTION

The application of AI-based forecasting methods has led to
great progress in the prediction of complex systems.1,2 Among the
AI methods being used so far, reservoir computing (RC) turns out
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to be a highly promising approach as it combines superior pre-
diction results with little CPU-needs for training,3–5 as well as its
ability to be realized by physical devices leading to novel, energy-
efficient unconventional computing methods.6 The software-based
realization of RC, called an echo state network,7 has proven to be
a valuable machine learning technique, overcoming the difficulties
connected with training conventional recurrent neural networks.

The reservoir computing approach in its conventional form is
purely data-driven, which is a useful approach if there is no knowl-
edge about the governing equations producing the data. In many
cases though, when machine learning is applied to the sciences,
some knowledge about the underlying system is available, and its
inclusion into the data-driven machine learning methods can be
beneficial in improving the prediction accuracy as well as leading
to greater interpretability. These combinations of machine learning
and physical knowledge are attributed to the important emerging
field called theory-guided data science, which “seeks to exploit the
promise of data science without ignoring the treasure of knowl-
edge accumulated in scientific principles.”8 There are several ways to
combine physical knowledge-based models with machine learning
techniques, with the general aim to create highly accurate, physically
consistent models while being resource efficient (see Willard et al.9

for a review of different possibilities and applications). For example,
a common way to include physical knowledge into machine learn-
ing is to add a physical loss to the overall loss function, in order
to introduce soft constraints for physical consistency. In contrast to
this physics-informed loss function, where the physical knowledge
is only introduced during the training stage, another approach is to
employ hybrid models, where the knowledge-based model becomes
an integral part of the machine learning architecture that operates
during training and inference.

One example area of science that benefits greatly from hybrid
models is the field of extreme events in complex dynamical systems,
which studies phenomena such as epidemics, tsunamis, droughts,
and more.10 Due to the high complexity of these systems, which
consist of a multitude of different interacting parts, a detailed model-
based description of the full dynamics is often not feasible. Over-
coming these issues is usually achieved by employing approximate
reduced-order models or using novel data-driven machine learning
methods. However, both approaches have significant limitations,
as extreme events are often inherently nonlinear phenomena that
occur only rarely within the available data. Combining reduced-
order models with data-driven machine learning approaches often
leads to improved predictions and generalizability.10

In the field of reservoir computing, different ways to include
physical knowledge in to the RC framework have been explored.
Doan et al.11,12 introduced the physics-informed echo state net-
work (PI-ESN), which was later extended by Racca and Magri.13

By incorporating a physics-based loss term, the PI-ESN utilizes
the time series’ true physical equations in order to fine-tune the
RC output matrix Wout in a second training phase, following the
usual RC training phase using only data. Consequently, the PI-ESN
approach falls into the category of loss-based physics-ML methods.
Their exemplary predictions on the Lorenz-63 system and chaotic
flows related to the Navier–Stokes equation demonstrated improved
robustness to noise and overall more accurate predictions compared
to data-driven RC.

The object of the studies in this work is the hybrid RC approach
introduced by Pathak et al.,14 where, in contrast to the PI-ESN,
physical knowledge becomes an integral part of the RC architec-
ture. The authors demonstrated significant improvements in fore-
casting the three-dimensional chaotic Lorenz-63 system and high-
dimensional spatiotemporal chaotic Kuramoto–Sivashinsky system
compared to the usual data-driven RC approach. The physical
knowledge of the system is given as an imperfect knowledge-based
model (KBM), K(·), which is a function of the current state of the
time series u(t) that outputs an approximation of the next state:
K(u(t)) ≈ u(t + 1t). In the original implementation, the KBM is
inserted at two independent points within the RC architecture: first,
as an additional input (which we refer to as input hybrid), and sec-
ond, directly at the RC output (which we refer to as output hybrid).
The simultaneous usage of input and output hybrid, as in the orig-
inal implementation, in this work is referred to as full hybrid. In
the subsequent works that employed the hybrid RC approach, all
three combinations (input, output, and full hybrid) were utilized,
yet a comparative study between the three options is still missing.

Wikner et al.15 implemented a parallelized hybrid reservoir
computing approach, combining the output hybrid method with
local states, in order to forecast large spatiotemporal chaotic systems
in a scalable manner. This method is then applied in Arcomano et
al.16 to atmospheric modeling, using a low-resolution atmospheric
global circulation model as the imperfect knowledge-based model.
In Wikner et al.,17 data assimilation is used to train the output
hybrid model for the task of predicting chaotic dynamical sys-
tems. Racca and Magri18 also used the output hybrid approach
alongside a normal data-driven RC approach to investigate robust
optimization and validation techniques for learning chaotic dynam-
ics. In Köster et al.,19 a delay-based RC was combined with a model
element discovered from data, employing the output hybrid archi-
tecture. Shahi et al.20 compared different recurrent neural network
approaches, including the input hybrid RC approach, for the pre-
diction of arrhythmic cardiac action potentials. Huhn and Magri21,22

used the full hybrid approach to learn and optimize ergodic aver-
ages of chaotic acoustics, employing a reduced-order model as the
knowledge-based model. In most cases, the hybrid approach was
shown to be superior in terms of prediction quality, compared to
the usual data-driven RC approach.

In this paper, the three different hybrid RC approaches
are systematically compared for the task of forecasting chaotic
dynamical systems. Here, we use nine different three-dimensional
chaotic systems and the high-dimensional spatiotemporal chaotic
Kuramoto–Sivashinsky system as exemplary systems. As the effec-
tiveness of the hybrid approach is strongly affected by the accuracy
of the knowledge-based model, different knowledge-based models
are considered, whose correspondence with the true model varies
strongly. Our overall results suggest that the output hybrid architec-
ture achieves the optimal combination of data-driven and model-
based elements in hybrid reservoir computing in terms of accuracy,
robustness to model error, interpretability, and simplicity.

The remainder of this paper is organized as follows. Section II
introduces the forecasting methods, namely, data-driven and hybrid
reservoir computing. Section III describes the implementation
details, including the chaotic dynamical systems used as time series
data, the different knowledge-based models, and the methods used
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for model evaluation. The results are presented and discussed in
Sec. IV, and the work of this study is concluded in Sec. V.

II. FORECASTING METHODS

A. Reservoir computing

This section introduces a slightly generalized RC architecture,
which allows for a joint description of the usual data-driven RC
approach and of the hybrid RC approach developed by Pathak et al.14

Depending on whether the hybrid methods are employed or not, the
following functions finp and fout have different forms, but the training
and prediction scheme remains the same.

The state of the true time series, used as training data, will
be denoted as a udim-dimensional vector u(t). From a bird’s eye
view, during the training phase, the reservoir—a high-dimensional
and nonlinear dynamical system—is fed with the true time series
u(t), one discrete time step 1t at a time. By encoding the true time
series u(t) nonlinearly in the high-dimensional reservoir state r(t),
the reservoir’s output yr(t) is fitted using ridge regression (RR) to
approximate the time series next state: yr(t) ≈ u(t + 1t). During
the prediction phase, the reservoir’s output yr(t) is used as its next
input, allowing the reservoir to run autonomously in a loop for an
arbitrarily long number of prediction steps.

1. Architecture

In this section, the RC architecture defining the flow of quanti-
ties from the input to the output is described. The architecture relies
on the usual echo state network implementation.7 The time series
input is denoted as ũ(t) referring to the true time series u(t) dur-
ing synchronization and training, as well as the previous prediction
yr(t − 1t) during the prediction phase. The training and prediction
phases will be described in detail in Secs. II A 3 and II A 4.

In the first step, the time series input ũ(t) is transformed to the
xdim-dimensional reservoir input x(t),

x(t) = finp(ũ(t)). (1)

In the usual data-driven RC approach, the reservoir input is
simply given directly as the time series input x(t) = ũ(t). In the
input hybrid approach, as will be described in Sec. II B 2, finp(·) will
additionally contain the knowledge-based model.

Before feeding the reservoir input into the reservoir, it is stan-
dardized to zero-mean and unit-variance using the standard-scaler
function S(·), which is fitted during the training phase,

x̂(t) = S(x(t)). (2)

The standardized reservoir input x̂(t) is then coupled to the
so-called reservoir, which is realized as a high-dimensional recur-
rent neural network, whose internal reservoir state is given as a
rdim-dimensional vector r(t),

r(t) = tanh
(

Winx̂(t) + Ar(t − 1t) + b
)

. (3)

x̂(t) is connected to the reservoir through the rdim × xdim input
matrix Win and the recurrent connections between consecutive
reservoir states r(t) are introduced through the rdim × rdim adja-
cency matrix A, also known as the reservoir network. The rdim-
dimensional node bias vector b is introduced to break the symmetry

within the reservoir in order to suppress the appearance of mirror
attractors.23 The hyperbolic tangent tanh(·) is used as the node acti-
vation function, introducing the important nonlinearities by acting
element-wise on each dimension of its argument. Following the fun-
damental idea of RC, the internal parameters A, Win, and b are static
quantities initialized once before the training and then kept fixed.
Their implementation details are discussed in Sec. II A 2. The pur-
pose of Eq. (3) is to encode the time series inputs ũ(t), ũ(t − 1t), . . .
nonlinearly into the high-dimensional reservoir state r(t) so that the
desired output can be learned by simple ridge regression.

The reservoir state r(t) is then transformed to the
hdim-dimensional ridge regression input vector h(t),

h(t) = fout(r(t), ũ(t)). (4)

In the simplest data-driven RC approach, the RR input is sim-
ply given by the reservoir states directly h(t) = r(t). The more gen-
eral Eq. (4) allows for the inclusion of the knowledge-based model
within the output hybrid approach, as will be described in Sec. II B 3.

The reservoir’s output yr(t) is then calculated as a simple linear
function of the RR input h(t),

yr(t) = Wouth(t) + wout. (5)

The output matrix Wout and intercept wout are simply obtained
by ridge regression, as will be described in Sec. II A 3. The reservoir’s
output yr(t) aims to predict the next step in the time series.

2. Random initialization of Win, A, and b

Before beginning the training phase, the static quantities Win,
A, and b are randomly initialized and then kept fixed.

The rdim × xdim input matrix Win connects the standardized
reservoir input x̂(t) to the reservoir states r(t). The elements of Win

are populated in a sparse way,24 where each reservoir node ri is
connected to only one randomly chosen reservoir input variable xj.
Consequently, each xdim-dimensional row in Win contains exactly
one non-zero element, whose value is randomly drawn from a uni-
form distribution within the range [−σ , σ ]. The hyperparameter σ

represents the input strength.
The reservoir network A introduces the recurrent connections

between consecutive reservoir states r(t) and r(t − 1t). Following
the usual implementation,24 it is realized by a weighted Erdös-Rényi
network, which is generated as follows. Each possible undirected
edge between reservoir node i and j with i, j ∈ [1, . . . , rdim], i 6= j, is
generated with a probability p, resulting in an average node degree
of d = p(rdim − 1). For each of the created undirected edges, both
of the directed edges constituting the undirected edge are weighted
independently with a random number drawn from a uniform dis-
tribution within the range [−1, 1]. Finally, in order to control the
overall scaling applied by the reservoir matrix, each of its elements is
uniformly rescaled to a specific spectral radius ρ > 0, which is usu-
ally chosen to be smaller than one to ensure that the influence of
past inputs fades away with time. This property is linked to the echo
state property, which has encountered some controversy within the
reservoir computing literature.25

Each element of the rdim-dimensional node bias vector b is ran-
domly drawn from the uniform distribution [−σb, σb], where the σb

refers to the node bias scale.
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3. Training

For the training phase, knowledge of a NTS + NT long training
sequence of the true time series u(t) is assumed. During the train-
ing phase, the time series input of the RC architecture, as defined in
Sec. II A 1, is taken to be the actual time series data: ũ(t) = u(t). The
training sequence is split into a NTS long synchronization sequence
Usync = [u(t1), . . . , u(tNTS

)], a subsequent NT − 1 long input train-
ing sequence UT = [u(tNTS+1), . . . , u(tNTS+NT−1)], and another
NT − 1 long output training sequence shifted one time step into the
future Y = [u(tNTS+2), . . . , u(tNTS+NT

)].
As a first step, the standard-scaler function S(·) is fitted to cen-

ter the reservoir input x(t) = finp(u(t)) and rescale it to unit-variance
across the training sequence UT. The standard-scaler function acts
on each dimension i = 1, . . . , xdim of the reservoir input variable
xi(t) as

S(x(t))i =
1

si

(xi(t) − x̄i), (6)

where x̄i = 〈xi(t)〉 and si =
√

〈(xi(t) − x̄i)
2〉 represent the dimension-

wise mean and standard deviation across the training sequence
finp(UT) of reservoir inputs, respectively.

Once the standard-scaler function is fitted, the synchronization
and input training sequences Usync and UT are transformed to cre-
ate the corresponding standardized reservoir input x̂(t) sequences,
which are then used to drive the reservoir via Eq. (3). In order to
do so, the initial state of the reservoir is initialized to zero, r(t0)

= [0, . . . , 0]T, and then synchronized to the time series data after
being driven with Usync, arriving at the synchronized reservoir state
r(tNTS

). The synchronization aims to remove any dependency on the
arbitrarily chosen initial condition r(t0). The subsequent reservoir
states generated by driving with the training input data UT are trans-
formed to the RR input variables h(t) via Eq. (4) and collected into a
hdim × (NT − 1) matrix H = [h(tNTS+1), . . . , h(tNTS+NT−1)].

The output matrix Wout and intercept wout and are then
obtained by ridge regression (including an unregularized intercept)
by fitting the collection of RR input variables H to the collection of
desired outputs Y represented as a udim × (NT − 1) matrix. The RR
solutions for Wout and wout are calculated as24

Wout = YHT
c

(

HcH
T
c + βI

)−1
, (7)

wout = y − Wouth. (8)

y and h represent the dimension-wise mean across the datasets
Y and H, respectively. Hc represents the centered RR input dataset

Hc = H − h. The regularization parameter β > 0 is a crucial hyper-
parameter in RC which aims to avoid overfitting.

To summarize the training phase, the reservoir’s output Eq. (5)
was trained to approximate the next step of the time series, yr(t)
≈ u(t + 1t), when driven with the true time series · · · , u(t
− 1t), u(t) up to time t.

4. Prediction

Once the output matrix and intercept are fitted, the RC model
is able to generate arbitrarily long predictions continuing a given NPS

long sequence of the true time series u(t). In order to do so, the NPS

long sequence of the true time series is used to re-synchronize the
reservoir state by driving the reservoir via Eqs. (1)–(3), as was done
in the training phase. Having synchronized the reservoir, an initial
prediction is obtained from the reservoir’s output via Eqs. (4)–(5),

yr(tNPS
) = Wout · fout(r(tNPS

), u(tNPS
)) + wout

≈ u(tNPS+1). (9)

Future predictions are then simply obtained by using the reser-
voir’s previous prediction as the new time series input: ũ(t + 1t)
= yr(t). Consequently, Eqs. (1)–(5) can be run in a loop for an arbi-
trary number of steps, and the generated outputs yr(t) represent the
time series forecast.

B. Hybrid reservoir computing

1. Knowledge-based model

In the original implementation by Pathak et al.,14 the
knowledge-based model (KBM) takes the form of a function act-
ing on the state of time series and producing an imperfect next-step
prediction,

K(u(t)) ≈ u(t + 1t). (10)

In that implementation, the KBM output dimension Kdim

equals the time series dimension udim. In principle, Eq. (10) can be
relaxed so that K(·) represents any function that contains physical
knowledge about the system, which does not necessarily have to be
an approximate next-step predictor. In these cases, Kdim 6= udim is
also possible. For instance, in Racca and Magri,18 a reduced-order
KBM is obtained by using a Proper Orthogonal Decomposition,
leading to Kdim < udim.

2. Input hybrid

In the input hybrid (IH) approach, the reservoir input x(t) is
given as the concatenation of the time series input ũ(t) and the KBM
output K(ũ(t)),

x(t) = finp(ũ(t)) =

[

ũ(t)
K(ũ(t))

]

. (11)

This extends the former input dimension of normal data-
driven RC, xdim = udim, to xdim = udim + Kdim. Consequently, the
input matrix Win becomes a rdim × (udim + Kdim) matrix, where the
first udim columns connect the pure input ũ(t) to the reservoir nodes
and the last Kdim columns connect the knowledge-based predic-
tor K(ũ(t)) to the reservoir nodes, r(t), respectively. The original
implementation by Pathak et al.14 additionally introduces a value
γ ∈ [0, 1] defining the fraction of reservoir nodes that are exclu-
sively connected to the pure input u(t) by controlling the generation
of the input matrix Win. Here, the additional KBM inputs and pure
inputs are treated equally.

3. Output hybrid

In the output hybrid (OH) approach, the ridge regression input
variables, which are given by the pure reservoir states h(t) = r(t)
in the usual data-driven RC, are extended by the knowledge based
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model, K(ũ(t)). Consequently, the OH approach is implemented by
setting

h(t) = fout(r(t), ũ(t)) =

[

r(t)
K(ũ(t))

]

. (12)

As a result, the output matrix Wout now has the shape of udim

× (rdim + Kdim), where the first rdim rows connect the reservoir states
and the last Kdim rows connect the KBM to the output, respectively.
The reservoir output Eq. (5) can then be rewritten as

yr(t) = Wout

[

r(t)
K(ũ(t))

]

+ wout, (13)

= Wresr(t)
︸ ︷︷ ︸

yres(t)

+ WkbmK(ũ(t))
︸ ︷︷ ︸

ykbm(t)

+wout. (14)

The partial output matrices, Wres and Wkbm, are of the shape
udim × rdim and udim × Kdim, respectively. The partial outputs yres(t)
and ykbm(t) represent the reservoir and KBM contributions to the
total output yr(t), respectively. As the data-driven and model-
informed information are only combined in the linear output
layer, investigating yres(t) and ykbm(t) allows for a straightforward
interpretation of their respective influence on the prediction. In
Sec. IV, the dimension-wise standard deviations of yres(t) and
ykbm(t), std(yres/kbm,j), will be presented for selected cases, which are
generated when driving the reservoir with the training input.

4. Full hybrid

In the full hybrid (FH) approach, as it was initially introduced
by Pathak et al.,14 both the input hybrid approach via Eq. (11), and
output hybrid approach via Eq. (12) are employed simultaneously.

5. Remarks

The three possible hybrid RC approaches, IH, OH, and FH,
alongside the normal data-driven approach are visualized in Fig. 1.
The main idea of these hybrid approaches is to make the physical
knowledge, K(ũ(t)), available within the reservoir’s prediction. The
output hybrid framework works in a straightforward manner, with
ridge regression finding the optimal weights in Wout that combine
the reservoir states r(t) with the KBM output K(ũ(t)) to learn the
next step in the time series. In the input hybrid approach, the KBM
output is fed into the reservoir as additional input, making it less
straightforward to interpret.

In contrast to the original implementation,14 the hybrid
approach defined in this work employs the standard-scaler function
S(·). In the usual data-driven RC approach, the additional standard-
scaler layer is not necessarily needed, as the whole training time
series dataset can just be rescaled to zero-mean and unit-variance.
However, this leads to issues in the hybrid approaches, as the KBMs
assume the unscaled original time series u(t) as its input. This short-
coming is overcome by employing the additional standard-scaler
layer.

FIG. 1. Different hybrid reservoir computing architectures.

III. IMPLEMENTATION

A. Time series data from dynamical systems

The hybrid reservoir computing approaches are applied to the
task of forecasting nine three-dimensional chaotic systems, as well as
the spatiotemporal chaotic Kuramoto–Sivashinsky system. All sys-
tems are numerically simulated with a time step of 1t, essentially
reducing them to a map,

u(t + 1t) = Ktrue(u(t)). (15)

Due to the chaotic nature of the considered time series, any
forecast is destined to fail after some finite time, as errors grow
exponentially in time. This property is captured by a positive largest
Lyapunov exponent, λmax > 0, and corresponding Lyapunov time
1/λmax, after which the error has increased on average by a fac-
tor e. The largest Lyapunov exponents of the various systems are
calculated from their respective maps [Eq. (15)] using the algorithm
described in Sprott,26 as outlined in Appendix B.

1. 3D chaotic dynamical systems

The evolution of the three-dimensional chaotic dynamical sys-
tems is described by a flow F(·) acting on the three-dimensional state
u(t) of the dynamical system,

u̇(t) = F(u(t)). (16)

The discrete time series u(t0), u(t0 + 1t), . . . is generated by
numerically solving the flow Eq. (16) using the fourth-order Runge-
Kutta method (RK4): ktrue = kRK4. The flow equations, parameter
values, time steps 1t, initial conditions, and largest Lyapunov val-
ues of the nine chaotic dynamical systems tested are listed in
Appendix A.
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2. Spatiotemporal chaotic Kuramoto–Sivashinsky

system

In order to investigate the performance of the hybrid
RC architectures in forecasting high-dimensional spatiotemporal
chaotic systems, the one-dimensional Kuramoto–Sivashinsky (KS)
equation27,28 is used. The KS system is described by the following
partial differential equation (PDE) for the 1D state function u(x, t):

u̇(x, t) = −uux − auxx − uxxxx. (17)

As is common, the parameter a is set to one: a = 1. Here,
the parameter a is explicitly introduced, as it will be modified
within the ε-model described in Sec. III B 1, to create an artifi-
cially imperfect model that will then be used as the knowledge-based
model. The KS system is numerically simulated using the ETDRK4
method:29 ktrue = kETDRK4. The simulation is conducted on a grid of
udim = 64 uniformly spaced grid points, employing periodic bound-
ary conditions with a domain size of L = 35 and a time step of 1t
= 0.25. The choice of udim, L, and 1t corresponds to the choice
in the original hybrid RC implementation.14 As in Kassam and
Trefethen,29 the initial condition for the udim-dimensional state
vector is given as

u(t0) = cos

(
2π

udim

[1, 2, . . . , udim]T

)

×

(

1 + sin

(
2π

udim

[1, 2, . . . , udim]T

))

. (18)

The largest Lyapunov exponent is calculated as λmax = 0.074 89
using the method outlined in Appendix B, which corresponds well
to the value noted in Pathak et al.14 (≈ 0.07).

B. Tested knowledge-based models

This section introduces the various KBMs K(·) that will be uti-
lized to test the different hybrid approaches. While the flow- and
sine-models are only applied to the nine three-dimensional systems,
the ε-model is also applied to the spatiotemporal KS system.

1. ε-model Kε

The ε-model, as was originally used by Pathak et al.,14 is created
by modifying one parameter value of the true dynamical system’s
equation (flow for the three-dimensional systems and PDE for the
KS system) and then using the same numerical integration method
as for the true data (RK4 or EDTRK4), in order to artificially create
an imperfect predictor Kε(·). The modified parameter is obtained by
multiplying one of the true system’s parameters by a factor (1 + ε).
Consequently, the model error ε controls the level of imperfect-
ness, where ε = 0 corresponds to the true knowledge-based model:
Kε=0 = Ktrue.

The chosen parameters for each of the nine chaotic dynamical
systems, as well as for the KS system, which are modified within the
ε-model, are displayed in Table I.

TABLE I. Selected parameters of the dynamical systems, which are modified within

the ε-model.

System Eq. ε-parameter System Eq. ε-parameter

Lorenz-63 (A1) ρ Roessler (A6) c
Chen (A2) a Rucklidge (A7) κ

ChuaCircuit (A3) α Thomas (A8) b
DoubleScroll (A4) a Windmi (A9) a
Halvorsen (A5) a KS (17) a

2. Flow-model Kflow

The flow-model is simply given as the flow of the true three-
dimensional dynamical system: Kflow = F. The flow-model is incor-
porated into this study to investigate whether a KBM that does
not function as a next-step predictor, Kflow(u(t)) 6≈ u(t + 1t), yet
still contains information about the system, can be leveraged by
the hybrid approaches to improve the prediction qualities when
compared to usual data-driven RC.

3. Sine-model Ksin

To examine the impact of an extremely inaccurate model that
incorporates no knowledge about the underlying system but still
produces a nonlinear transformation of the time series state, the
sine-model is employed,

Ksin(u(t)) = sin(u(t)). (19)

The sine function is applied to every dimension of its argument.

C. Experimental setup

In this section, the experimental setup used to evaluate the pre-
diction qualities of the data-driven and hybrid RC approaches is
described.

1. Forecast horizon measure

In order to measure the quality of a single prediction, the
forecast horizon (also known as valid time) is calculated, which mea-
sures the time that the true time series closely matches the predicted
time series. As described in Sec. II A 4, the reservoir has to be syn-
chronized with a NPS long sequence of the true time series u(t) before
the forecast can be generated. The following NP long forecast gen-
erated by the reservoir’s output yr(t) can then be compared to the
true continuation of the time series, denoted as y(t). The forecast
horizon tv is obtained as the elapsed time before the normalized,
time-dependent error e(t) exceeds a threshold value emax,14

e(t) =
‖y(t) − yr(t)‖
〈

‖y(t)‖2
〉1/2

. (20)

Here, 〈·〉 represents the average over all prediction steps NP and
‖ · ‖ denotes the L2-norm over all state space dimension. The fore-
cast horizon in defined as the time tv when e(t) > emax for the first
time. It is measured in terms of the Lyapunov times 1/λmax of the
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FIG. 2. Training and prediction sections of the ensemble experiment. For demon-
stration purposes, nT = 3 and nP = 2 are used.

dynamical system to be predicted, in order to ensure greater com-
parability across different systems. The threshold is chosen to be
emax = 0.4.

2. Ensemble experiment method

As the RC framework contains three sources of randomness,
namely, the input matrix Win, the reservoir network A, and the node
bias vector b, different random realizations of these quantities result
in different predictions of various qualities. Therefore, to properly
assess the prediction quality of a particular reservoir architecture
defined by its hyperparameters, the prediction must be repeated for
an ensemble of reservoir realizations. Furthermore, as the predic-
tion quality also depends on the specific time series sections used for
training and prediction, the statistical significance of the results is
further improved by training and predicting each reservoir realiza-
tion on multiple sections of the time series. The following describes
the implementation details of the employed ensemble experiment.

To begin, an ensemble of nres random realizations of the quan-
tities (Win, A, b) is generated as described in Sec. II A 2, each repre-
senting one RC realization ires. Each RC realization is trained on the
same nT consecutive training sections resulting in nres × nT trained
reservoirs. Each training-section iT contains NTD + NTS + NT time
steps, which includes NTS train-synchronization steps and NT train-
fitting steps, as described in Sec. II A 3. To ensure that the different
training sections are independent of each other, the first NTD steps
of each section are discarded. Next, each reservoir realization ires

that was trained on the training section iT predicts on nP consec-
utive prediction sections following the training section, resulting
in nres × nT × nP predictions. Each prediction section consists of
NPD + NPS + NP time steps, where the first NPD time steps are again
discarded for greater independence and to traverse larger portions
of the attractor. The following NPS time steps are used for synchro-
nization, after which the prediction is performed for NP time steps,
as described in Sec. II A 4. Finally, for each ires, iT, and iP, the reser-
voir prediction is compared to the true time series of that prediction
section, and the forecast horizon tv(ires, iT, iP) is recorded. As a final

TABLE II. Number of time steps used for the training and prediction sections, as

described in Sec. III C 2.

Training Prediction

System NTD NTS NT NPD NPS NP

3D chaotic systems 1000 100 2000 1000 100 2000
Kuramoto–Sivashinsky 7000 200 10 000 1000 200 1500

measure of the prediction qualities, the median value from the set
of nres × nT × nP forecast horizons is calculated, with the lower and
upper quartiles serving as the range of uncertainty.

The data points for the standard deviations for the reservoir
and KBM output contributions in the OH model during the training
phase, std(yres/kbm,j), are also obtained as the median value across all
nres × nT trained reservoirs, with the error bar given by the lower
and upper quartiles.

The selection of training and prediction sections is visualized in
Fig. 2. The number of realizations, training sections, and prediction
sections is chosen to be nres = nT = 15 and nP = 10, resulting in an
effective ensemble of 15 × 15 × 10 = 2250 forecast horizon calcu-
lations. The number of time steps used per training and prediction
section is displayed in Table II.

3. RC hyperparameter values

The hyperparameter values defining the RC setup (data-driven
and hybrid) are chosen in a heuristic manner, corresponding to the
usual parameter ranges used in RC, and are listed in Table III. Pre-
liminary experiments have demonstrated that a spectral radius of
ρ ≈ 0.4 yields favorable results across most of the tested systems.

IV. RESULTS

In order to investigate the predictive powers of the three
hybrid models (IH, OH, and FH), we compare the forecast hori-
zons for these architectures with each other and with a conventional
non-hybrid reservoir, utilizing the three knowledge-based models:
ε-model, flow-model, and sine-model. Additionally, in order to
assess the predictive powers of the KBMs alone, the forecast hori-
zons of the linearly fitted KBMs are also shown. This approach
corresponds to the OH/FH architecture without a reservoir (rdim

= 0), and its output reduces to

ykbm-fitted(t) = WkbmK(ũ(t)) + wout. (21)

Among the considered KBMs, only the ε-model functions as a
next-step predictor directly: u(t + 1t) ≈ Kε(u(t)). These unaltered
ε-model forecasts are additionally presented as a baseline within the

TABLE III. Chosen RC hyperparameter values.

Reservoir Input Node bias Ridge regression

rdim d ρ σ σ b β

Varied 5.0 0.4 1.0 0.4 10−7
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ε-model results,

ykbm-only(t) = Kε(ũ(t)). (22)

While all KBMs (ε-model, flow-model, sine-model) are tested
for the predictions of the nine three-dimensional chaotic systems
with a particular focus on the Lorenz-63 system, only the ε-model
is applied for the prediction of the high-dimensional spatiotemporal
Kuramoto–Sivashinsky system.

A. ε-model results for 3D systems and

high-dimensional Kuramoto–Sivashinsky system

1. 3D systems

Figure 3 shows the influence of reservoir dimension rdim and
model error ε on the forecast horizons of the Lorenz-63 system.

With the model error fixed at ε = 0.1, Fig. 3(a) clearly shows
that all three hybrid approaches significantly increase the forecast
horizons compared to either the reservoir-only, the KBM-only, or
the KBM-fitted prediction for all reservoir sizes tested: rdim = 25
→ 2000. The pure KBM-only forecast provides the overall worst
prediction results. Similar to what is typically observed in reservoir-
only approaches, the hybrid approaches also extend their forecast
horizons as the reservoir size rdim increases, after which they saturate
at one point. Within the hybrid approaches, the predictive results of
OH and FH are identical and superior to those of the IH approach.
While the predictive powers of the reservoir-only and IH approaches
are diminished as the reservoir size decreases, those of the OH and
FH approaches remain quite accurate, even for the smallest tested
reservoir size of rdim = 25: tvλmax ≈ 6. On the other hand, the lim-
ited predictive power of the KBM-fitted approach, corresponding
to the OH/FH approach with rdim = 0, demonstrates that the rea-
sonably accurate predictions of the OH/FH approaches with a small
reservoir are not solely attributed to the KBM, but rather require at
least a small reservoir size. Since the IH approach employs the KBM
only as an additional reservoir input, it requires a sufficiently large
reservoir to effectively leverage the KBM.

Figure 3(b) shows the effect of a varying model error ε for
a fixed reservoir dimension of rdim = 500. As expected, the fore-
cast horizons of all hybrid approaches as well as the KBM-only and
KBM-fitted approaches increase as the model error decreases from
an extremely inaccurate model, ε = 100, to an extremely accurate
model, ε = 10−4. This effect is particularly prominent for the KBM
approaches, both of which approximately reach the forecast hori-
zon of the reservoir-only prediction for ε = 10−4 (tvλmax ≈ 7.5).
While this increased accuracy of the KBM is clearly mirrored in
the OH and FH approaches, enabling them to reach a high fore-
cast horizon of tvλmax ≈ 15, the IH approach interestingly saturates
for ε < 1, achieving a maximal forecast horizon of tvλmax ≈ 10. This
demonstrates that the OH and FH approaches, both of which imple-
ment the KBM in the linear output layer, benefit more strongly
from an extremely accurate model compared to the IH approach,
where the KBM has to traverse through the nonlinear reservoir. At
a high model error of ε = 100, the OH approach is equivalent to the
reservoir-only approach, whereas the FH and IH approaches exhibit
even slightly lower forecast horizons.

Figure 4 visualizes the reservoir and KBM contributions of the
OH approach for predicting the Lorenz-63 system with a smaller

FIG. 3. Forecast horizon of Lorenz-63 system for the three hybrid RC, reser-
voir-only, KBM-only, and KBM-fitted approaches using the ε-model. (a) The model
error is fixed at ε = 0.1, and the reservoir dimension is varied from rdim = 25
→ 2000. (b) The reservoir dimension is fixed at rdim = 500, and the model error
is varied from ε = 10−4 → 102.

model error of ε = 0.1 and a larger error of ε = 1. As described
in Sec. II B 3, in the OH approach, the reservoir and KBM con-
tributions [yres(t) and ykbm(t)] to the overall output yr(t) can be
easily separated since they are simply combined additively accord-
ing to Eq. (14). With a smaller model error of ε = 0.1, panel (a),
most of the total output yr(t) (“Both”) consists of the accurate
KBM contribution, while the reservoir contribution is very small
(green dot below “KBM” and “Both” trajectory). Nevertheless, the
spatially small reservoir contribution plays an important role in pre-
dictive powers, as observed in Fig. 3, where the OH prediction with
ε = 0.1 and rdim = 500 achieves a high forecast horizon of tvλmax

≈ 13, whereas the forecast horizon of the KBM-fitted approach is as
low as tvλmax ≈ 2.5. This behavior is consistent across the ensemble
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FIG. 4. Partial reservoir outputs of the OH approach for the Lorenz-63 system
using the ε-model (ε = 0.1 and ε = 1) as the KBM and a reservoir dimension of
rdim = 500. Panels (a) and (b) display the trajectories of the partial outputs yres(t)
(“Reservoir”) and ykbm(t) (“KBM”), and the resulting full output yr(t) (“Both”),
obtained from the first training fit (ires = iT = 1). Panels (c) and (d) display the
corresponding standard deviations across each dimension (median value and
lower/higher quartile over all nens reservoirs and nT training sections).

of reservoir realizations nens and training sections nT, as evident
from the small error bars in panel (c), which indicate the lower and
upper quartile around the median value of the respective contribu-
tions’ standard deviations. As expected, for a higher model error of
ε = 1, panels (b) and (d), the spatial extent of the reservoir con-
tribution increases, with both the KBM and reservoir contributions
leading to a distorted Lorenz-63-like attractor. These results demon-
strate how the output matrix Wout in the OH approach is capable of
selecting the optimal combination of the KBM and reservoir nodes
based on the model’s accuracy.

Figure 5 illustrates the forecast horizons with a rather small
model error of ε = 0.1 for the nine different three-dimensional
dynamical systems using a smaller reservoir size of rdim = 50, panel
(a), and a larger reservoir size of rdim = 500, panel (b). The forecast
horizons obtained from the KBM-fitted and KBM-only approaches
(independent of rdim) provide insights into the accuracies of the
respective ε-models for the systems when modifying the system
parameters listed in Table I. The almost equal predictive abilities of
the OH and FH approaches, previously observed for the Lorenz-63
system, can also be confirmed for the other eight three-dimensional
chaotic systems and both reservoir sizes tested. Their superior
forecast horizons, compared to the IH, KBM, and reservoir-only
approaches, once again become most apparent for the small reser-
voir size (rdim = 50), wherein the IH and reservoir-only approaches
struggle to achieve good prediction results. Similarly, for the larger

FIG. 5. Forecast horizon for the three hybrid RC, reservoir-only and KBM
approaches for nine 3D chaotic model systems using the ε-model with ε = 0.1.
Panel (a) small reservoir (rdim = 50) and panel (b) large reservoir (rdim = 500).

reservoir size of rdim = 500, the OH and FH approaches are supe-
rior to the IH approach (except for the Chua-Circuit, where all three
are equal). However, in this scenario, the IH approach has acquired
a significant amount of predictive power, further demonstrating
that the IH approach requires a sufficiently large reservoir size to
function properly. In any case, the IH approach still achieves bet-
ter prediction results compared to the reservoir-only approach.
However, when considering the smaller reservoir, the input hybrid
performs even worse than the simple KBM-fitted forecasts for
certain systems. Interestingly, the reservoir-only predictions for
the Double-Scroll, Rössler, and WINDMI systems are not able to
achieve any accurate predictions, even for the larger reservoir size
rdim = 500. On the other hand, the hybrid approaches, particularly
the OH and FH approaches, are able to generate very accurate
predictions for these three systems.
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FIG. 6. Forecasts for the Kuramoto–Sivashinsky system. The vertical red lines
indicate the forecast horizon. The model error is given as ε = 1 and the reservoir
dimension as rdim = 4000.

2. Kuramoto–Sivashinsky

The predicted trajectories corresponding to the first
reservoir realization, the first training section, and the first pre-
diction section (ires = iT = iP = 1) for the spatiotemporal chaotic
Kuramoto–Sivashinsky system, alongside the true simulated trajec-
tory, are visualized in Fig. 6. The respective forecast horizons are
indicated as vertical red lines for each predictor. From a qualitative
standpoint, all predictors except the KBM-only approach are capa-
ble of generating KS-like trajectories, while the KBM-only approach
seems to converge toward a stationary state. While all hybrid
approaches outperform the reservoir-only and KBM approaches, the
OH and FH approaches once again demonstrate superior prediction
results.

The prediction results of this single trajectory are supported by
the ensemble experiment displayed in Fig. 7, where the reservoir
dimension (panel a) and model error (panel b) are varied. These
results are qualitatively very similar to the previously discussed
Lorenz-63 findings (see Fig. 3): the OH and FH forecast horizons
are roughly equivalent and superior to the IH forecast horizons,
while all hybrid approaches still perform better than the reservoir-
only approach (except for a large model error ε = 10 in panel b).
Contrary to the Lorenz-63 findings, the KS ε-model with ε = 1
appears to already be quite accurate, as evident from the large fore-
cast horizon of the KBM-fitted approach (panel a), which matches
the maximal forecast horizon of the reservoir-only approach with
rdim = 6000: tvλmax ≈ 1. The sharp increase in forecast horizons of
the OH and FH approaches, transitioning from an extremely small

reservoir of rdim = 50 to a reservoir size rdim = 1000 that is still rela-
tively small, in light of the large KS time series dimension udim = 64,
once again illustrates how a relatively small reservoir can signifi-
cantly benefit from a fairly accurate KBM within the OH and FH
approaches. On the other hand, the forecast horizons of the IH
and reservoir-only approaches improve more slowly as the reser-
voir size increases. Similar to the Lorenz-63 findings, in the case of
a large model error of ε = 10 (panel b), the OH approach seems
to converge toward the reservoir-only approach, whereas the IH
and FH approaches exhibit even slightly lower forecast horizons. As
the model error is decreased, the predictive capabilities of the IH
approach saturate already for ε < 1, whereas the predictive abilities
of the OH and FH approaches only reach saturation for ε < 10−1,
indicating once again for the high-dimensional KS system that the
latter approaches can benefit more strongly from highly accurate
KBMs.

B. Flow-model results for 3D systems

In this section, the flow F(·) of the respective three-dimensional
dynamical systems (see Appendix A for the flows of all nine 3D sys-
tems) will be used as the KBM within the three hybrid approaches,
as well as for the KBM-fitted predictor. This experiment represents
a case in which the KBM does not function as a next-step predictor
but still contains knowledge about the underlying system. Therefore,
a KBM-only predictor is not applicable in this case.

Figure 8 shows the influence of the reservoir size rdim on the
forecast horizons of the Lorenz-63 system. All hybrid approaches
show higher forecast horizons compared to the reservoir-only
approach. This demonstrates that the physical knowledge within
the flow of the Lorenz-63 system can indeed be leveraged by the
hybrid approaches. Unlike the comparatively accurate ε-models,
where the forecast horizons of the OH and FH approaches were,
in most cases, significantly higher than those of the IH approach,
the usage of the flow-model leads to very similar forecast horizons
across all hybrid architectures, especially for reservoir dimensions
rdim > 300. For reservoirs of smaller size, where rdim < 300, the
OH approach demonstrates slightly better prediction results, while
both the IH and FH approaches align closely with the predictions
of the reservoir-only model. Overall, the improvements in predic-
tions achieved by the hybrid approaches over the reservoir-only
approach are only marginal when compared to the ε-model [com-
pare with Fig. 3(a)]. This marginal improvement is also reflected in
the unsuccessful KBM-fitted prediction.

Figure 9 shows the forecast horizons for all nine chaotic
dynamical systems, with a fixed reservoir size of rdim = 500. The
inaccuracy of the flow-models, compared to the ε-models, becomes
evident through the unsuccessful KBM-fitted predictions for all
nine systems. Nevertheless, for most systems, the hybrid methods
can benefit from the flow-models and achieve longer forecast hori-
zons compared to the reservoir-only approach. This is particularly
evident in the cases of the Rössler and WINDMI systems, where
the reservoir-only predictions are unsuccessful, while the hybrid
approaches lead to significant prediction results. Interestingly, the
Chua-Circuit and Thomas systems represent two cases in which
the OH approach performs slightly worse than the reservoir-only

Chaos 33, 103109 (2023); doi: 10.1063/5.0164013 33, 103109-10

© Author(s) 2023

 15 O
ctober 2023 19:07:07

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 7. Forecast horizon of spatiotemporal chaotic Kuramoto–Sivashinsky
system for the three hybrid RC, reservoir-only, KBM-only, and KBM-fitted
approaches using the ε-model. (a) The model error is fixed at ε = 1, and
the reservoir dimension is varied from rdim = 50 → 6000. (b) The reser-
voir dimension is fixed at rdim = 4000, and the model error is varied from
ε = 10−3 → 10.

approach, while the IH and FH approaches show small improve-
ments.

C. Sine-model results for 3D systems

Finally, the sine-model, Eq. (19), is considered which repre-
sents a highly inaccurate model containing no information about
the dynamical system. As for the other KBMs, Fig. 10 shows the
influence of the reservoir dimension rdim on the prediction of the
Lorenz-63 system, while Fig. 11 depicts the forecast horizons for all
nine 3D dynamical systems that were tested using a reservoir dimen-
sion of rdim = 500. As expected, the KBM-fitted approach is not able
to generate any successful predictions. For the Lorenz-63 system

FIG. 8. Forecast horizon of Lorenz-63 system as a function of the number of
reservoir nodes for the three hybrid RC, reservoir-only, and KBM-fitted approaches
using the flow-model as the KBM.

shown in Fig. 10, the OH and reservoir-only approaches perform
equally well and significantly outperform the IH and FH approaches,
which also show equal forecast horizons. This holds true regardless
of the reservoir dimension. The equivalence in performance between
the OH and reservoir-only approaches, along with their superior-
ity over the IH and FH predictions, is consistently observed across
most of the other eight dynamical systems, as depicted in Fig. 11.
This demonstrates that when the model is highly inaccurate, the
OH approach reduces to the often still satisfactory reservoir-only
prediction. On the other hand, the IH and FH approaches, which
incorporate the inaccurate model into the reservoir states r(t), fail
to ignore the inaccurate model, and as a result, the prediction qual-
ity decreases. The Thomas system behaves differently than the other

FIG. 9. Forecast horizon for the three hybrid RC, reservoir-only, and KBM-fit-
ted approaches for nine 3D chaotic model systems using the flow-model and a
reservoir dimension of rdim = 500.
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FIG. 10. Forecast horizon of Lorenz-63 system as a function of the number of
reservoir nodes for the three hybrid RC, reservoir-only, and KBM-fitted approaches
with an inappropriate choice of model (sine-model).

systems, as the OH approach here is actually slightly worse than the
reservoir-only prediction, while the IH and FH approaches perform
even slightly better. The exceptional behavior for the Thomas sys-
tem can be attributed to the fact that its flow equation, Eq. (A8),
includes the terms sin(x), sin(y), and sin(z). Therefore, in this case,
incorporating the sine-model Ksin actually introduces some rele-
vant knowledge about the system. In the case of the OH approach,
it appears to generate unstable predictions, while the IH and FH
approaches seem to be able to leverage them successfully.

Figure 12 depicts the standard deviations of the partial KBM
and reservoir outputs for the OH approach (rdim = 500) for the
Lorenz-63 system (panel a) and the Thomas system (panel b). The
ability of the OH approach to entirely disregard a highly inaccurate
KBM is demonstrated for the Lorenz-63 system, revealing that all
output contributions are attributed to the reservoir nodes, without

FIG. 11. Forecast horizon for the three hybrid RC, reservoir-only, and KBM-fitted
approaches for nine 3D chaotic model systems with an inappropriate choice of
model (sine-model) and a reservoir dimension of rdim = 500.

FIG. 12. Standard deviations of partial outputs yres (“Reservoir”) and ykbm
(“KBM”) for the OH approach with rdim = 500 and using the sine-model as the
KBM. Panel (a) the Lorenz-63 system and panel (b) the Thomas system.

any contributions from the sine-model. The fact that the sine-model
actually provides some information about the Thomas system can be
observed in panel (b), where the KBM output contributions do not
vanish. Nevertheless, as previously mentioned, the incorporation
of the sine-model into the Thomas system results in less accurate
predictions.

V. CONCLUSIONS

In this paper, we present a first comparative study of the three
hybrid reservoir computing approaches: input hybrid (IH), out-
put hybrid (OH), and full hybrid (FH), which combine data-driven
reservoir computing with an imperfect knowledge-based model
(KBM) for the task of forecasting the time evolution of chaotic
dynamical systems.

For KBMs that incorporate knowledge about the underly-
ing system, as provided by the ε-models and flow-models, it is
demonstrated that all three hybrid approaches outperform both
the reservoir-only and KBM baselines. Regarding rather accu-
rate KBMs, as provided by the ε-models, distinctions among
the three hybrid approaches become evident: The OH and FH
approaches show equal performances and significantly outperform
the IH approach. This is observed for the task of forecasting three-
dimensional chaotic systems, as well as the spatiotemporal chaotic
Kuramoto–Sivashinsky system. Furthermore, contrary to the IH
approach, the OH and FH approaches are shown to require only
very small reservoir sizes to generate fairly accurate predictions,
while the IH approach, on the other hand, requires larger reservoir
sizes to effectively leverage the KBM. The FH and OH approaches
are additionally shown to benefit most strongly from extremely
accurate KBMs, whereas the IH approach fails to show improve-
ments after a certain point, with further increases in KBM accuracy.

When the hybrid approaches are confronted with a highly inac-
curate KBM, as provided by the sine-model that incorporates no
knowledge of the underlying system, the advantages of the OH
approach over the FH and IH approaches become apparent. In those
cases, the OH approach, which combines the KBM with the reservoir
nodes only in the linear output layer, simply reduces to the data-
driven reservoir-only approach, while the FH and IH approaches,
which include the KBM as additional reservoir input, fail to ignore
the contributions of the flawed model, leading to drastically reduced
performances in the latter.
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One downside of the OH and FH approaches, as noted in Huhn
and Magri22 for FH, is the potential for outputs to diverge to infin-
ity within the closed-loop prediction phase when the predictions are
unsuccessful. This is due to the fact that the output hybrid KBM-
to-output-connection is, in principle, unbounded (depending on
the specific KBM used), in contrast to the tanh-bounded reservoir
nodes. As this issue may lead to problems in hyperparameter opti-
mization algorithms, Huhn and Magri22 proposed several ways to
overcome it, such as saturating the prediction error.

However, the OH approach is the only hybrid architecture that
offers the possibility to separate the KBM and reservoir contribu-
tions to the overall output, as both of them are only combined
additively in the linear output layer. This allows for a higher inter-
pretability of the knowledge-based and data-driven elements within
the hybrid prediction.

In essence, the results indicate the following: For accurate
KBMs, the FH and OH results are equivalent and significantly out-
perform the IH results, especially for smaller reservoir sizes. For
highly flawed KBMs, the OH approach reduces to the reservoir-
only approach, while the IH and FH approaches’ performance may
drastically reduce even further. This, along with the greater sim-
plicity and interpretability of the OH approach, suggests that the
OH approach is the most favorable architecture for hybrid reservoir
computing.
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APPENDIX A: 3D CHAOTIC DYNAMICAL SYSTEMS

This section displays the references and flow equations for the
nine three-dimensional chaotic dynamical systems considered in
this work. They all represent autonomous dissipative flows and are
collected from the appendix in Sprott.26 The original works intro-
ducing the systems are also provided in the following. The default
parameters, initial states, simulation time steps 1t, and largest Lya-
punov exponents (both calculated and reference values) are shown
in Table IV. The default parameters and initial states, along with
the reference largest Lyapunov exponent, are taken from Sprott.26

The forecast horizon results are obtained using the calculated largest
Lyapunov exponents. The resulting attractors of the nine systems are
shown in Fig. 13.

1. Lorenz-63 system

The prototypical Lorenz-63 system was introduced by Lorenz32

as a simplified model for atmospheric convection,

ẋ(t) = σ(y − x),

ẏ(t) = x(ρ − z) − y,

ż(t) = xy − βz.

(A1)

2. Chen’s system

Chen’s system, which is closely related to the Lorenz-63
system,33 was originally introduced by Chen and Ueta,34

ẋ(t) = a(y − x),

ẏ(t) = (c − a)x − xz + cy,

ż(t) = xy − bz.

(A2)

3. Chua’s circuit

The chaotic dynamics are stemming from a physical electronic
circuit involving one nonlinear element, known as Chua’s circuit.
The chaotic dynamics in Chua’s circuit were initially noted by
Matsumoto,35 and then rigorously studied by Chua et al.,36

ẋ(t) = α[y − x + bx + 0.5(a − b)(|x + 1| − |x − 1|)],

ẏ(t) = x − y + z,

ż(t) = −βy.

(A3)

4. Double scroll

Introduced by Elwakil and Kennedy37 as a “simple model which
can capture the essential dynamics of double-scroll-like chaotic
attractors.” It can also be realized by a physical electric circuit,

ẋ(t) = y,

ẏ(t) = z,

ż(t) = −a[z + y + x − sgn(x)].

(A4)

5. Halvorsen’s cyclically symmetric attractor

This cyclically symmetric attractor was originally introduced by
Arne Dehli Halvorsen (unpublished as noted in Sprott26),

ẋ(t) = −ax − 4y − 4z − y2,

ẏ(t) = −ay − 4z − 4x − z2,

ż(t) = −az − 4x − 4y − x2.

(A5)

6. Rössler attractor

Originally introduced by Rossler,38 it is like the Lorenz-63
system, a prototypical chaotic dynamical system,

ẋ(t) = −y − z,

ẏ(t) = x + ay,

ż(t) = b + z(x − c).

(A6)
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TABLE IV. System parameters and largest Lyapunov values of three-dimensional chaotic systems.

System Parameter values Initial state 1t λmax (calculated) λmax (Sprott26)

Lorenz-63 ρ = 28, σ = 10, β = 8/3 [0, − 0.01, 9] 0.05 0.9041 0.9056
Chen a = 35, b = 3, c = 28 [ − 10, 0, 37] 0.02 2.0138 2.0272
Chua-Circuit α = 9, β = 100/7, a = 8/7, b = 5/7 [0, 0, 0.6] 0.1 0.3380 0.3271
Double-Scroll a = 0.8 [0.01, 0.01, 0] 0.3 0.049 69 0.0497
Halvorsen a = 1.27 [ − 5, 0, 0] 0.05 0.7747 0.7899
Rössler a = b = 0.2, c = 5.7 [ − 9, 0, 0] 0.1 0.069 15 0.0714
Rucklidge κ = 2.0, λ = 6.7 [1, 0, 4.5] 0.1 0.1912 0.0643a

Thomas b = 0.18 [0.1, 0, 0] 0.3 0.038 01 0.0349
WINDMI a = 0.7, b = 2.5 [0, 0.8, 0] 0.2 0.079 86 0.0755

aFor the Rucklidge system, the largest Lyapunov exponent noted in Sprott26 does not correspond to the calculated one. In different studies,
the largest Lyapunov exponent is noted as λmax = 0.1877 (Rusyn30) and λmax = 0.193 (Pehlivan et al.31), which corresponds more closely to the
calculated one.

7. Rucklidge attractor

The Rucklidge system was introduced by Rucklidge39 as a
simple model related to fluid convection in a two-dimensional plane,

ẋ(t) = −κx + λy − yz,

ẏ(t) = x,

ż(t) = −z + y2.

(A7)

FIG. 13. Visualization of the chaotic attractors of the nine considered
three-dimensional chaotic systems using the system parameters, initial states,
and 1t as described in Table IV. The data points represent the first training and
synchronization section consisting of NTS + NT = 2100 time steps.

8. Thomas’ cyclically symmetric attractor

The Thomas’ attractor is, like the Halvorsen attractor, also
cyclically symmetric and was originally introduced by Thomas,40

ẋ(t) = −bx + sin(y),

ẏ(t) = −by + sin(z),

ż(t) = −bz + sin(x).

(A8)

9. WINDMI attractor

The WINDMI attractor relates to the dynamics in the solar-
wind-driven magnetosphere-ionosphere and was introduced by
Horton et al.,41

ẋ(t) = y,

ẏ(t) = z,

ż(t) = −az − y + b − exp(x).

(A9)

APPENDIX B: CALCULATION OF THE LARGEST

LYAPUNOV EXPONENT

The algorithm for numerically calculating the largest
Lyapunov exponent is taken from Sprott,26 which originated from
Benettin et al.42

The algorithm iterates the dynamical system’s initial state u(t0)

and a slightly perturbed state upert(t0) = u(t0) + δê, with ‖ê‖ = 1
and δ � 1 for a small number of n time steps using Eq. (15), and
calculates the exponential rate of divergence between the resulting
states via

λ = log

(
‖upert(tn) − u(tn)‖

δ

)

×
1

n1t
. (B1)

This procedure is repeated for mdisc + m times using u(tn)

→ u(t0) as the new initial state and u(tn) + δ
upert(tn)−u(tn)

‖upert(tn)−u(tn)‖

→ upert(t0) as the new initially perturbed state that is renormal-
ized to be again a distance of δ apart, and oriented in the direction
of largest expansion. The numerical estimation of the largest Lya-
punov exponent is then calculated as the average of λ over the last
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m iterations: λmax ≈ 〈λ〉m. The first mskip iterations are skipped in
order to only consider points that are on the system’s attractor. The
parameters are chosen to be δ = 10−10, n = 15, mdisc = 500, and
m = 3000.
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