Wang, Yi (2023) Boosting High Resolution Image Classification with Scaling-up Transformers. In: IEEE/CVF International Conference on Computer Vision Workshops, Seiten 1-4. ICCV/CVPPA 2023, 2023-10-02 - 2023-10-06, Paris, France.
PDF
697kB |
Kurzfassung
We present a holistic approach for high resolution image classification that won second place in the ICCV/CVPPA2023 Deep Nutrient Deficiency Challenge. The approach consists of a full pipeline of: 1) data distribution analysis to check potential domain shift, 2) backbone selection for a strong baseline model that scales up for high resolution input, 3) transfer learning that utilizes published pretrained models and continuous fine-tuning on small sub-datasets, 4) data augmentation for the diversity of training data and to prevent overfitting, 5) test-time augmentation to improve the prediction's robustness, and 6) "data soups" that conducts cross-fold model prediction average for smoothened final test results.
elib-URL des Eintrags: | https://elib.dlr.de/198042/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Boosting High Resolution Image Classification with Scaling-up Transformers | ||||||||
Autoren: |
| ||||||||
Datum: | 2023 | ||||||||
Erschienen in: | IEEE/CVF International Conference on Computer Vision Workshops | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Seitenbereich: | Seiten 1-4 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | high resolution image classification, remote sensing, continuous learning | ||||||||
Veranstaltungstitel: | ICCV/CVPPA 2023 | ||||||||
Veranstaltungsort: | Paris, France | ||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||
Veranstaltungsbeginn: | 2 Oktober 2023 | ||||||||
Veranstaltungsende: | 6 Oktober 2023 | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||
Hinterlegt von: | Wang, Yi | ||||||||
Hinterlegt am: | 03 Nov 2023 09:15 | ||||||||
Letzte Änderung: | 24 Apr 2024 20:58 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags