Bahtiri, Betim und Arash, Behrouz und Scheffler, Sven und Jux, Maximilian und Rolfes, Raimund (2023) A machine learning-based viscoelastic–viscoplastic model for epoxy nanocomposites with moisture content. Computer Methods in Applied Mechanics and Engineering (415). Elsevier. doi: 10.1016/j.cma.2023.116293. ISSN 0045-7825.
PDF
- Preprintversion (eingereichte Entwurfsversion)
3MB |
Offizielle URL: https://www.sciencedirect.com/journal/computer-methods-in-applied-mechanics-and-engineering
Kurzfassung
In this work, we propose a deep learning (DL)-based constitutive model for investigating the cyclic viscoelastic-viscoplastic-damage behavior of nanoparticle/epoxy nanocomposites with moisture content. For this, a long short-term memory network is trained using a combined framework of a sampling technique and a perturbation method. The training framework, along with the training data generated by an experimentally validated viscoelastic-viscoplastic model, enables the DL model to accurately capture the rate-dependent stress–strain relationship and consistent tangent moduli. In addition, the DL-based constitutive model is implemented into finite element analysis. Finite element simulations are performed to study the effect of load rate and moisture content on the force–displacement response of nanoparticle/epoxy samples. Numerical examples show that the computational efficiency of the DL model depends on the loading condition and is significantly higher than the conventional constitutive model. Furthermore, comparing numerical results and experimental data demonstrates good agreement with different nanoparticle and moisture contents.
elib-URL des Eintrags: | https://elib.dlr.de/197734/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | A machine learning-based viscoelastic–viscoplastic model for epoxy nanocomposites with moisture content | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 1 Oktober 2023 | ||||||||||||||||||||||||
Erschienen in: | Computer Methods in Applied Mechanics and Engineering | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1016/j.cma.2023.116293 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0045-7825 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | deep learning, nanocomposites, pertubation method, tangent moduli, finite element analysis, experimental data | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||
HGF - Programmthema: | Photovoltaik und Windenergie | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Windenergie | ||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systemleichtbau > Multifunktionswerkstoffe | ||||||||||||||||||||||||
Hinterlegt von: | Jux, Maximilian | ||||||||||||||||||||||||
Hinterlegt am: | 13 Nov 2023 08:10 | ||||||||||||||||||||||||
Letzte Änderung: | 20 Nov 2023 12:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags