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Abstract

In this work, we propose a deep learning (DL)-based constitutive model for investigating the

cyclic viscoelastic-viscoplastic-damage behavior of nanoparticle/epoxy nanocomposites with

moisture content. For this, a long short-term memory network is trained using a combined

framework of a sampling technique and a perturbation method. The training framework,

along with the training data generated by an experimentally validated viscoelastic-viscoplastic

model, enables the DL model to accurately capture the rate-dependent stress-strain relation-

ship and consistent tangent moduli. In addition, the DL-based constitutive model is im-

plemented into finite element analysis. Finite element simulations are performed to study

the effect of load rate and moisture content on the force-displacement response of nanopar-

ticle/epoxy samples. Numerical examples show that the computational efficiency of the DL

model depends on the loading condition and is significantly higher than the conventional

constitutive model. Furthermore, comparing numerical results and experimental data demon-

strates good agreement with different nanoparticle and moisture contents.

Keywords: Nanocomposite, Deep-Learning, Recurrent Neural Network,

Viscoelasticity-Viscoplasticity, Finite element

1. Introduction

Innovative designs of polymer nanocomposites have led to the development of advanced

materials with complex material response [1]. To accurately predict the history-dependent

behavior of the materials under hygrothermal conditions, more complex constitutive models
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with additional parameters have been developed in the literature [2, 3]. Although the pro-

posed constitutive models are able to describe the highly nonlinear behavior of the materials,

a major challenge is to reduce the error between the numerical predictions and the exper-

imental data under complex loading conditions. In addition, since the numerical modeling

of the nonlinear material behavior involves time-consuming iterative solutions, the ability of

deep learning (DL)-based constitutive models to improve the computational efficiency of the

numerical methods has attracted attention [4–8].

One of the first works in this direction is done by Ghaboussi et al. [9] presenting a neural

network approach to unify the mechanical behavior of plain concrete directly from experimen-

tal data. Since the material behavior is stated to be path-dependent, they trained the neural

network to predict the strain increments given the current state of stress, strain and stress

increment. Due to the requirement of a comprehensive set of experiments, the model was able

to predict only biaxial and uniaxial loading. This work is extended to an auto-progressive

training and therefore reduction of needed experimental data [10]. Stoffel et al. [11] utilized

the nonlinear stress-strain behavior of an aluminium tube under pressure to train a neural

network and substitute a viscoplastic model within a finite element (FE) framework. Since the

neural network applied is not able to intrinsically learn the path-dependent behavior of the

viscoplastic model they included the plastic strain tensor and backstress tensor as additional

inputs to predict the path-dependency. They showed that the computational time using the

neural network was up to 50% lower than in the case of the FE simulation. Similar efforts to

replace the constitutive model were presented in [12], where the gated recurrent unit structure

together with an attention mechanism is incorporated to learn the history-dependent elasto-

plastic mechanical behavior of low-yield-point steels under cyclic loading conditions. They

were able to depict the nonlinear behavior of the constitutive model and underlined the im-

portance of the loss-function used in the learning process of neural networks. Recently, long

short-term memory Networks (LSTM), which belong to the class of recurrent neural networks

(RNNs), have been incorporated with a FE2 [13] computational homogenization technique

to develop an anisotropic plasticity model for heterogeneous material under arbitrary loading

paths [14]. The authors map the strain tensor, the material parameters and an averaged strain

to depict the stress tensor by creating 14,000 sets of data to train the LSTM. The proposed

LSTM network is proving to be very effective in capturing the arbitrary loading paths for the

two-dimensional case. A similar approach is provided by Ghavamian et. al [15] who proposed

a strategy to collect stress-strain data from the micromechanical models of academic examples
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using a viscoplastic constitutive model and implement it into the FE2 homogenization scheme.

The authors utilize the automatic differentation of RNNs to compute the consistent tangent

tensor.

The above mentioned RNNs are developed by introducing recursions into the data flow

and therefore learning from the previous time step [16, 17]. This allows the neural networks to

learn long-term dependencies between timesteps of a sequence data and has been largely used

in DL for classification or regression tasks [18, 19]. However, Hochreiter et al. [20] reported

that RNNs suffer from fading memory and vanishing or exploding gradient, which motivated

the development of LSTMs by introducing gating of the architecture [21]. Through the gating

approach, the network is able to bridge minimal time legs by enforcing a constant error flow

through a error carousel within the units of the LSTM. Therefore, LSTM networks control

the data flow and address the fading memory and vanishing or exploding gradient problems

associated to regular RNNs [22]. This makes the LSTM a powerful network to depict history-

dependent and nonlinear mechanical behavior [23, 24].

Besides the increase in computational efficiency, DL models are also constructed to en-

hance computational mechanics in a different manner. Sadeghi and Lotfan [25] proposed an

approach to implement neural networks for system identification and parameter estimation

for a cantilever beam model in the presence of noise. Since a closed form for estimating the

non-linear parameters is not available, the authors introduce a neural network approach. The

results are validated using cross-validation, and the corresponding outputs confirm the pre-

dictability of the approach. Koeppe et al. [26] presented "meta elements," which maintain the

main idea of FE but lead to a significant model order reduction. The model predicts field

variables and forces using neural networks while reducing the number of degrees of freedom.

A similar approach is followed by Tandale et al. [27], who incorporate LSTM networks within

the finite element framework to predict the equivalent plastic strain of the elasto-viscoplastic

constitutive model. The authors apply a self-learning approach to make the neural network

adaptable to different materials by introducing a modified loss function. Other works extend

the usage of the DL models within computational mechanics by implementing physics-informed

neural networks, which learn the solution of the partial differential equations by utilizing a

loss function compromised of the residual error of the linear equilibrium and its boundary

conditions [28–31].

Although DL models have been developed for traditional materials, the development of

material models for new high-performance materials, such as polymer nanocomposites, is of
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great significance. Recently, nanoparticle-reinforced thermosets have shown to be a promising

composite material, where the low weight of epoxy resins is combined with the nanoparticles’

features [1]. Among different particles, boehmite nanoparticles (BNPs) have been considered

to improve the material properties of the composites, including shear strength, compressive

strength, and fracture toughness [2, 32]. Furthermore, intensive research activities on con-

stitutive models for composites have led to various models trying to reproduce the nonlinear

rate-dependent mechanical behavior of the material [33–36].

Among others, Boyce et al. [37] developed a finite deformation-based model for thermo-

plastic polyurethanes exhibiting strong hysteresis and softening. The material is composed of

hard and soft segments to take into account in the constitutive model derivation. Melro et

al. [38] introduced a constitutive model for continuous-fiber reinforced composites with a fixed

strain rate and therefore ignoring the viscoelasticity. The authors presented a model based

on a paraboloidal yield criterion to separate yield strengths under tension or compression and

pressure sensitivity. Poulain et al. [39] developed a finite deformation constitutive model for

epoxy resins and implemented a modified argon model [40] to predict the viscoelastic behavior

depending on temperature. They calibrated the model over a wide range of temperatures and

strain rates for uniaxial loading conditions. Arash et al. [2] developed a physically informed

model at finite deformations by utilizing molecular dynamics simulations [41, 42] to predict

material parameters and validated the model against uniaxial loading conditions. The study

shows that introducing atomistic simulations can reduce the number of experiments required to

calibrate the material model. They also successfully validated the model for uniaxial loading.

Recently, Arash et al. [3] developed a phase-field fracture model for polymer nanocomposites

and incorporated the moisture dependency in the constitutive model. Their results show good

agreement with experimental data at different nanoparticle contents. Regarding the modeling

of cyclic behavior, Rocha et al. [43] recently developed a model based on small strains and

included the moisture dependency for an epoxy system. They were able to predict several

phenomena, such as nonlinear reloading branches. Still, they could not accurately estimate

the amount of plastic strain. Silberstein et al. [36] presented a viscoelastic-viscoplastic model

for electrolyte membrane Nafion at ambient conditions by introducing a back stress approach

leading to accurate results for the mentioned material system.

Based on these investigations from the literature, some unaddressed issues still need to be

addressed. Firstly, the models are usually calibrated against uniaxial loading conditions, which

is insufficient to capture the viscoelastic behavior of polymer-based materials fully. Secondly,
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the constitutive models are mainly developed for neat polymeric material or composites at

dry conditions by neglecting ambient conditions and the influence of moisture content in

combination with particle contents. Thirdly, the models mostly fail to capture the time-

dependent irreversible response fully, or the predictions must be more accurate.

To address the open questions, we propose several additions to improve the performance

of the constitutive model for a nanoparticle reinforced and highly crosslinked thermosetting

polymer with moisture content. First, to capture the highly nonlinear hysteresis behavior, we

propose a nonlinear and physically motivated viscoelastic model, which is modified to capture

the strong hysteresis of the nanocomposite. Secondly, a stress softening damage approach is

implemented to the constitutive model to model the quasi-irreversible sliding of the molecular

chains. Finally, an additional viscoplastic dashpot, including strain-rate dependency, is added

to the constitutive model to depict the time-dependent irreversible viscoplastic response. The

model is derived for investigating the effect of moisture content on the stress-strain behavior of

BNP/epoxy nanocomposite at finite deformation. Due to the complexity of the constitutive

model, a DL model is developed to increase the computational efficiency of the numerical

simulations.

The present work is organized as follows. First, we present the nonlinear viscoelastic-

viscoplastic damage model in Section 2, including moisture and nanoparticle volume fraction

dependency at finite deformations. The integration and explanation of the multilayered LSTM

network are then provided in Section 3. Here, insights are delivered into the training tech-

nique to predict the constitutive model and the tangent modulus tensor needed in the finite

element framework. Next, a finite element formulation is presented in Section 4 to integrate

our constitutive- and DL model. In Section 5, the proposed constitutive model is validated

using numerical simulations, and the effect of moisture, BNPs volume fraction on the cyclic

loading-unloading behavior of the nanocomposites is investigated. Beyond this, we underline

the benefits of the DL model compared with the conventional constitutive model by high-

lighting the efficiency increase. The study may broadly impact the usage of DL models in

computational mechanics in the sense that the proposed model can replace a complex and

highly time-consuming time integration of the constitutive model yet keep the advanced pre-

dictability of the material model.
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2. Constitutive model for nanoparticle/epoxy

In this section, a viscoelastic-viscoplastic damage model for BNP/epoxy nanocomposites

is proposed. The stress response is decomposed into an equilibrium part and two viscous parts

to capture the nonlinear rate-dependent behavior of the materials. The effect of BNPs and

moisture on the stress-strain relationship is taken into account by defining an amplification

factor as a function of the nanofiller and moisture contents. Here, we also take into account

the material swelling through moisture. The proposed model is an extension of previous work

by Bergstrom and Hilbert [44], aimed at predicting the experimentally observed response of

BNP/epoxy nanocomposites under cyclic loading.

2.1. Kinematics

The total deformation gradient, containing the mechanical deformation, is multiplicatively

split into a volumetric and deviatoric part as

F = J1/3 Fiso, (1)

where J = det[F] and Fiso are the volumetric deformation and the isochoric deformation

gradient, respectively. The volume deformation is further decomposed into two terms: The

mechanical compressibility Jm and the moisture-induced swelling Jw, leading to an overall

volumetric deformation as

J = Jm Jw, (2)

where

Jw = 1 + αw ww. (3)

In the equation above, αw is the moisture swelling coefficient and ww is the moisture con-

tent [3, 45]. Our model incorporates experimental characteristics by decomposing the material

behavior into a viscoelastic and a viscoplastic part, corresponding to the time-dependent re-

versible and time-dependent irreversible response, respectively. We further decompose the

viscoelastic stress response into a hyperelastic network and a viscous network. The hyperelas-

tic spring, associated with the entropy change due to deformations, captures the equilibrium

response, while the viscous network composed of an elastic spring and a viscoelastic dash-

pot describes the non-equilibrium behavior of the nanocomposites. Additionally, the quasi-

irreversible sliding of the molecular chains, resulting in stress softening, also known as the
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Mullins effect [46, 47], is implemented within the constitutive model. A schematic structure

of the model is presented in Fig. 1.

Viscoplastic

flow (Fvp)

Viscous flow (Fv, σneq)

Equilibrium response (Fe, σeq)

Viscoelastic flow (Fve)

Figure 1: One-dimensional schematic of the viscoelastic-viscoplastic constitutive model.

The proposed constitutive model is able to capture the following main features of the

material behavior:

1. Nonlinear elasticitiy at finite deformation;

2. nonlinear viscoelastic behavior;

3. viscoplastic flow because of stress driven chain sliding;

4. stress softening during deformation; and

5. the effect of moisture content on the stress-strain relationship.

The deviatoric part of the deformation gradient is decomposed into a viscoplastic and a

viscoelastic component [48]:

Fiso = Fve
isoFvp

iso. (4)

Also, the viscoelastic deformation gradient is split into an elastic and an inelastic part as

Fve
iso = Fe

isoFv
iso. (5)

Accordingly, similar decompositions are obtained for the left Cauchy-Green deformation ten-
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sors:

Biso = Fiso FT
iso, (6)

Bv
iso = Fv

iso FvT
iso, (7)

Be
iso = Fe

iso FeT
iso. (8)

2.2. Viscoelastic-viscoplastic damage model at finite deformation

The Cauchy stress acting on the viscoelastic network is decomposed into equilibrium σeq,

non-equilibrium σneq and volumetric σvol terms. The equilibrium and non-equilibrium stress

are given by a generalized neo-Hookean model

σ = J−1 (µeq Bve
iso + µneq Be

iso ) , (9)

and the volumetric part is defined by

σvol = 1
2kv

Å
Jm − 1

Jm

ã
1, (10)

resulting in an overall stress

σtot = (σ + σvol), (11)

which is formulated in the damaged state as follows:

σd
tot = (1 − d)(σ + σvol), (12)

where d ∈ [0, 1) is a scalar damage variable and its evolution obeys the following rule:

ḋ = A(1 − d)Λ̇max
chain. (13)

A is a material parameter calibrated using experimental data, Λchain =
»

tr[Biso]/3, Λ̇max
chain

takes the following form:

Λ̇max
chain =

0 Λchain < Λmax
chain

Λ̇chain Λchain ≥ Λmax
chain

(14)

The shear moduli of the neo-Hookean stress contribution depend on the BNPs volume fraction

vnp and moisture content ww as follows:

µeq(vnp, ww) = X(vnp, ww) µ0
eq, (15)

µneq(vnp, ww) = X(vnp, ww) µ0
neq, (16)
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while the volumetric bulk modulus kv is a constant. Nanoparticles play an important role in

the mechanical behavior of the epoxy system. The BNPs are assumed to be rigid particles,

which occupy a significant volume and serve as effective stiff fillers in the material. We apply

a slightly modified Guth-Gold model [49] to obtain the effective stiffness of the nanoparticle-

modified epoxy system. Although the quadratic form of the amplification factor X is adopted,

we increase the gradient of the quadratic function, since the BNP reinforced epoxy is assumed

to have a higher stiffness than the thermoplastic material used in [37]. Also, we add a moisture

dependency on the effective stiffness of the material, resulting to the following amplification

factor [3]

X =
(
1 + 5vnp + 18v2

np

) (
1 + 0.057w2

w − 9.5ww

)
, (17)

where vnp is the volume fraction of BNPs and ww represents the moisture content. The total

velocity gradient of the viscoelastic network, Lve = Ḟve (Fve)−1 , can be decomposed into

an elastic and a viscous component analogously to Eq. (5)

Lve = Le + FeLeFe−1 = Le + L̃v, (18)

and

L̃v = ḞvFv−1 = D̃v + W̃v. (19)

Here, D̃v represents the rate of the viscous deformation and Wv is a skew-symmetric tensor

representing the rate of stretching and spin, respectively. We make the intermediate state

unique by prescribing W̃v = 0. The rate of the viscoelastic flow is constitutively described by

D̃v = ε̇v

τneq
dev
î
σ

′

neq

ó
(20)

where τneq = ‖ dev[σneq] ‖F represents the Frobenius norm of the driving stress, ε̇v is the

viscous flow and σ
′

neq = RT
e σneqRe represents the stress acting on the viscous component

in its relaxed configuration. The viscous flow is defined by the Argon model:

ε̇v = ε̇0 exp
ï∆H

kbT

ÅÅ
τneq

τ0

ãm

− 1
ãò

, (21)

where kb, ε̇0, ∆H and τ0 are the Boltzmann constant, a pre-exponential factor, the activation

energy and the athermal yield stress. Recent models [39, 50] have shown a better agreement

with experimental data by using the exponential factor m as a material parameter and there-

fore reconcile the moisture- or temperature dependency of the stiffness with the softening of
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the viscoelastic flow. We also modify the athermal yield stress of the argon model and propose

a nonlinear behavior of the athermal yield stress driven by the local chain stretch Λchain, in

contrast to the linear modification proposed by [37]. In our case, we use a sigmoid function

for the athermal yield stress modification as follows:

τ0 = y0 + as

1 + exp
Å

−
Ä
Λ̇max

chain
− x0

ä
bs

ã . (22)

The presented modification leads to an increase of the viscoelasticity with increasing stretch

and damage. This leads to an increasing hysteresis after each cycle, which is also observed in

different experimental data [43, 51]. Especially in the first few cycles an increasing hysteresis

converging to a constant value after a certain point, is observed. Our model captures the

initial exponential increase before reaching a plateau after a certain stretch. This way we

ensure an inflationary increase of the viscoelastic behavior in the beginning of the stretch

while keeping the athermal yield stress at the deformed configuration upon removal of applied

stretch, thus assuming that the athermal yield stress change is taken to be permanent. The

parameters y0, x0, as and bs are material parameters which are calibrated using experimental

data. The implemented sigmoid function is presented in Fig. 2.

In summary, the time derivative of Ḟv can be derived from Eq. (20) and Eq. (19) as follows:

Ḟv = Fe−1ε̇v
dev
î
σ

′

neq

ó
τneq

Fve. (23)

Similarly, the total velocity gradient of the overall network, L = Ḟ(F)−1 , can be expanded

Λchain

τ0

Figure 2: Proposed sigmoid-function for the behavior of the athermal yield stress τ0 driven by the local chain

stretch Λchain.
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to the following:

L = Lve + FveLvpFve−1 = Lve + L̃vp. (24)

Again, we consider the viscoplastic velocity gradient to be additively decomposed into the

symmetric rate of stretching and the skew-symmetric rate of spinning:

L̃vp = ḞvpFvp−1 = D̃vp + W̃vp, (25)

and we take W̃vp = 0 again leading to:

D̃vp = ε̇vp

τtot
dev
î
σ

′

tot

ó
, (26)

where dev
î
σ

′

tot

ó
is the total deviatoric stress in its relaxed configuration and τtot is the

Frobenius norm of the total stress. To characterize the viscoplastic flow ε̇vp, we implement a

simple phenomenological representation, similar to [52], as follows:

ε̇vp =

0 τtot < σ0

a(ε − ε0)bε̇ τtot ≥ σ0

, (27)

where a,b and σ0 are material parameters. ε0 is the stress at which the viscoplastic flow is

activated, represented by the Frobenius norm of the Green strain tensor ‖ E ‖F , which is

derived from the deformation gradient:

E = 1
2 (FT F − I), (28)

and ε̇ is the strain rate of the effective strain ‖ E ‖F , thus introducing a simple strain-

rate dependency of the viscoplastic flow. Analogous to Eq. (23), the time derivative of the

viscoplastic deformation gradient is given by

Ḟvp = Fve−1ε̇vp
dev
î
σ

′

tot

ó
τtot

Fiso, (29)

characterizing the rate kinematics of the viscoplastic flow. We obtain the viscous and vis-

coplastic deformation gradients at the end of a time increment using the Euler backward time

integration. The step-by-step procedure is presented in Section 4.

3. Deep learning-based constitutive model

To replace the complex viscoelastic-viscoplastic model with a deep learning-based model,

the following framework is implemented:
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1. Calibrate and validate the nonlinear viscoelastic-viscoplastic damage model using ex-

perimental data.

2. Use the following nonlinear mapping of the input sequence to the corresponding output

sequence: 
~B

∆t

ww

vnp

 →
[
~σtot

]
, (30)

~B represents the upper triangular components of the overall left Cauchy-Green de-

formation tensor, ∆t is the timestep, and ~σtot is the stress vector of the undamaged

material containing the upper triangular components again. This ensures fewer inputs

and outputs while capturing two physics-informed principles: Local balance of angular

momentum and preserving the stress-free undeformed configuration [53]. The proposed

mapping scheme leads to 9 input values mapped to 6 output values. We include ∆t,ww,

and vnp to ensure the effect of rate, moisture, and BNP content on the nanocompos-

ites’ behavior will be captured. Here, the stress tensor of the undamaged material is

calculated after the mapping scheme to obtain more flexibility regarding the damage

model.

3. Generate specific data by adapting a perturbation method to capture any complex load-

ing condition and accurately calculate an approximation of the tangent modulus tensor

Ĉ.

4. Train and validate an LSTM-enhanced deep network to learn the constitutive model.

5. Implement the proposed DL model in the FE analysis.

σ
LSTM

σ

Figure 3: Proposed scheme for the finite element implementation of the intelligent constitutive model.

Starting from the constitutive model, a DL model is developed and integrated into the finite element analysis.
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In the following subsections, the architecture of the DL model and the training framework

are presented.

3.1. Long-short term memory network

In deep learning, dense feed-forward neural networks are the basic building block of deep

networks and can represent the nonlinear mapping of Eq. (30) from inputs x to predictions t

with a number of consecutive layers L and trainable parameters ω as

Fnn(ω) : x → t, (31)

where the trainable parameters ω include weights W and biases b of each Layer. For each

layer, a linear transformation of the inputs x is applied before a non-linear activation is

enforced to obtain the activation of each layer al. This can be expressed as

al = Φl
(
Wl · al − 1 + bl

)
, l = 1, 2 ... L. (32)

Here, Φ is the nonlinear activation function and the first activation a0 corresponds to the

input vector while the last activation aL represents the output of the deep network.

While feed-forward deep networks have been proven to yield good results for the non-

linear behavior of constitutive models [11, 54–56], they are not able to predict sequential

data xt that may be sorted according to real-time and collected into a larger sequence

x = [x1...xT ]. Hence, we implement a multilayered LSTM deep network consisting of sev-

eral memory cells and gates for remembering and forgetting information in each sequence by

minimizing a loss between the target t and the prediction t∗. The input sequence in our case

yields x = ([~B, ∆t, ww, vnp]1 , ... , [~B, ∆t, ww, vnp]T ), which is mapped to a stress vector

t = ([~σtot]1 , ... , [~σtot]T ).

The architecture of a single LSTM cell is presented in Fig. 4. In the illustration, h and c

denote the hidden and cell states at timestep i − 1 and i, respectively. The hidden state is an

encoding of the most recent timestep and can be processed at any point to obtain meaningful

data. The cell state acts as a global memory of the LSTM network over all timesteps, allowing

the LSTM cell to have information on the history of each sequence. The learnable parameters

ω of each component presented in Fig. 4 of the LSTM cell are the input weights W, the

recurrent weights R, and the bias b. These matrices are concatenations of the input weights,
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the recurrent weights, and the bias of each gate as follows:

W =


Wi

Wf

Wg

Wo

 , R =


Ri

Rf

Rg

Ro

 , b =


bi

bf

bg

bo

 , (33)

where i, f, g and o denote the input gate, forget gate, cell candidate, and output gate, respec-

tively, as presented in Fig. 4.

σ σ tanh σ

tanh

ci − 1 ci

hihi − 1

xi

Forget Gate

Input Gate

Output Gate

Candidate Gate

ti

Figure 4: A single LSTM cell consisting of multiply connected layers. σ represents the sigmoid function,

tanh is the hyperbolic tangent function. The forget gate, input gate and output gate do control the data flow

into the cell. The candidate gate presents a possible candidate for the cell state.

The cell state ci at timestep i is given by

ci = f i � ci−1 + ii � gi. (34)

The operator � corresponds to Hadamard product or element-wise product. The hidden state

hi can be evaluated as follows:

hi = oi � tanh
(
ci
)

, (35)

14



where the components of each gate are described by the following equations:

ii = σ
Ä
Wixi + Rihi−1 + bi

ä
, (36)

f i = σ
(
Wf xi + Rf hi−1 + bf

)
, (37)

gi = tanh
(
Wgxi + Rghi−1 + bg

)
, (38)

oi = σ
(
Woxi + Rohi−1 + bo

)
. (39)

In the equations above, ii, f i, gi and oi are respectively the components of the input gate,

forget gate, cell candidate and output gate, and σ represents the sigmoid function. The

element-wise product allows each gate to control the data flow into the cell state ci by con-

sidering the history of the sequence. As we can see in Eq. (34), we use the previous cell state

and the current cell candidate to obtain the current cell state ci, which then is used as an

input to obtain the final output vector ti at each timestep as follows:

ti = oi � tanh
(
ci
)

. (40)

To predict the stress tensor using the described Deep Network, we employ two LSTM layers

and connect them to a dense forward layer. Therefore, we need to save two hidden states and

cell states for each LSTM cell as depicted in Fig. 5. The stacked LSMT units are responsible

for processing the input vector xi and the state variables through the gates, therefore updating

the state of the LSTM units and representing an encoded representation of the current state.

This ensures that the required history path dependency is included. To transform the encoded

representation of the current state from the LSTM units, we apply a dense forward layer that

approximates the stress vector σi
tot from the LSTM output ti.

Input: xi LSTM LSTM Dense
Forward

Output:
σtot

hi
1

ci
1

hi
2

ci
2

hi−1
1

ci−1
1

hi−1
2

ci−1
2

Figure 5: Overall structure of the LSTM enhanced intelligent constitutive model including two LSTM layers.

The input layer includes our input vector xi at step i and the state variables hi−1
1 , ci−1

1 , hi−1
2 and ci−1

2 used

in both LSTM layers. The output vector σtot is predicted by the dense forward layer.

We follow a supervised approach to train our parameters ω of our deep network. The
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subsection below presents a space-filling sampling approach to generate training data.

3.2. Data generation

To capture the path-dependent behavior of our constitutive model, we presented a mapping

scheme including moisture, strain rate, and BNPs volume fraction dependency. Consequently,

generating the database for the supervised learning of the LSTM-enhanced Deep Network as

presented in Fig. 5 is essential for the learning process. Different approaches are presented in

the literature to generate training data [23, 27, 53, 57–60]. Here, we implement a space-filling

procedure to make sure our DL-model can be trained sufficiently to predict the stress σtot of

the viscoelastic-viscoplastic constitutive model at any possible three-dimensional state.

The driving force for the generation of loading paths in our finite deformation model is

the deformation gradient F. Each Fij(i, j = 1, ..., 3) component leads to a different loading

scenario. Therefore, we generate data using the deformation gradient in a spatiotemporal

space. Firstly, we constrain the components of the deformation gradient as follows:

Fij ∈

[0.9 1.1], when i = j

[−0.05 0.05], when i 6= j
. (41)

In this study, the sampling process starts from an undeformed configuration in which the

diagonal elements of the deformation gradient are set to 1.0, and the upper/lower triangular

components are set to 0.0. This ensures a bounded spatial space within a realistic viscoelastic-

viscoplastic regime for the nanocomposites. Accordingly, the DL model is expected to learn

and predict the correct output accurately inside this domain. To cover the nine-dimensional

spatial space with sufficient random points, quasi-random numbers are produced using the

Halton sequence generation algorithm [61], leading to uniform samples within the space and

a better sampling of the region. As presented in Fig. 6, the resulting points in the spatial

space adequately span the bounded domain compared with the pseudorandom algorithm used

in most algorithms.

To generate loading paths for training the DL model, we first produce the uniform data

points for each of the nine components of the total deformation gradient. It allows capturing

loading scenarios related to uniaxial tension or compression, triaxial loading, biaxial loading,

and pure or simple shear loading. We utilize the uniform data points for each component

of the deformation gradient to generate 5% of the training data. Secondly, we implement

an algorithm to randomly visit the quasi-random data points in the nine-dimensional spatial
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Figure 6: Example of the generated data points in a two dimensional space using the Halton sequence

algorithm (a) and the pseudorandom MATLAB algorithm (b).

space of the deformation gradient components. Therefore, loading paths to capture complex

loading scenarios are created as shown, for example, in Fig. 7 for the diagonal components of

the deformation gradient. We utilize the quasi-random data points in the nine-dimensional

space to generate 95% of the training data. This process ensures that both simple and complex

loading scenarios are included in the training data.
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Figure 7: Example of three generated loading paths in the uniformly distributed space for the diagonal

components Fii of the deformation gradient. All paths start from the undeformed configuration (i.e., F = I).

The created sequence then serves as an input to integrate the constitutive model using

the Euler backward algorithm and create the training sequence as presented in Eq. (30).
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The loading paths are created using different time and deformation increments within ∆F ∈[
10−6, 10−4] and ∆t ∈ [0.05, 5]s. This ensures a realistic time and deformation step within

FE simulations and allows us to constrain the strain rate within ε̇ ∈
[
10−5, 10−3] 1/s. Table 1

summarizes the step-by-step algorithm for generating training data in the nine-dimensional

spatiotemporal space.

Table 1: Summary of the step-by-step algorithm for generation of a single training sequence.

1. Generate uniform data for the nine components.

of the deformation gradient in a range defined by Eq.(41).

2. Define P as the number of points to be visited.

3. Generate loading path within the 9-dimensional space

as exemplary presented in Fig. 8 (for the 3-dimensional space)

for moisture content ww and BNPs volume fraction vnp.

4. Calculate a representative strain rate as: ε̇ = ‖ E ‖F / ∆t ,

where E is presented in Eq. (28).

5. If ε̇ > 1 · 10−5 and ε̇ < 1 · 10−3 GOTO step 6 else GOTO step 3.

6. Add a perturbation step to the generated loading path according to algorithm 1.

7. Integrate the constitutive model and obtain σtot.

8. Create the input sequence x and the output sequence σtot for training.

This process is repeated for three different points to be visited P: P = 1, P = 3 and

P = 6. P represents the number of points visited within a loading path in the space, thus

resulting in different loading-unloading scenarios in tension and compression and capturing

complex deformation paths. The overall generated data for the supervised learning contains

T = 52000 sequences, including 10% for validation. For better performance of the DL model,

we normalize our input data by calculating the per-feature mean and standard deviation of

all the sequences. Then, we subtract the mean value and divide each training observation by

the standard deviation. The training is done on two Tesla V100 GPUs, with each 20 CPU

cores.

For FE analysis, we need to accurately predict the stress tensor σtot for the constitutive

model and the perturbation method, as presented in the next section. For this, each generated

loading path is modified by adding a random perturbation at the end of each sequence as

presented in algorithm 1 and illustrated exemplarily in Fig. 9. Accordingly to the algorithm,

the components to be perturbed are chosen randomly. Therefore, in this specific case, no

perturbation associated with the component F22 is employed. This allows the deep network
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to randomly learn a sudden change of each deformation gradient component by a specific

perturbation step, which is also the case for the perturbation method. It is noteworthy that

the tangent modulus Ĉ can also be computed from the automatic differentiation of the DL

model [15, 62, 63]. However, due to the scarcity of automatic differentiation libraries in finite

element software packages and the higher computational efficiency [23], we propose a data

generation scheme to predict the tangent modulus using the perturbation method accurately.

Algorithm 1 Perturbation of the loading path in order to learn the approximation of Ĉ
Input: Total loading path: F with length n

Output: Perturbed last step included in F

1: Perturbation parameter: α = 1 · 10−4

2: GOTO last step of loading path: Fij(n)

3: Choose random components ip and jp of Fij(n) to be perturbed

4: for i = 1:3 do

5: for j = 1:3 do

6: if i == ip and j == jp then

7: Perturbate component: F̃ij = Fij(n) + α

8: Add component to F: Fij(n + 1) = F̃ij

9: else . Needed to keep sequence length constant

10: Add unchanged component to F: Fij(n + 1) = Fij(n)

11: end if

12: end for

13: end for

With the technique used, a training framework to obtain data-driven surrogate models at

finite deformation can be developed. The training data is able to inherently capture four basic

concepts of our constitutive model:

• Viscoelasticity and viscoplasticity in a three-dimensional space.

• Strain rate dependency within the range of 1 · 10−5 and 1 · 10−3.

• Moisture and BNPs volume fraction dependency.

• Approximation of the tangent modulus tensor using the perturbation method.

3.3. Hyperparameters

The hyperparameters of the Deep Network include the number of LSTM cell layers, the

activation function for the output layer, the batch size, the number of units in an LSTM layer,
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(a) Sequence corresponding to the red path in Fig. 7.
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(c) Sequence corresponding to the black path in Fig. 7.

Figure 8: The created loading paths for the diagonal terms of the deformation gradient generated from the

visited points as displayed in Fig. 7. Each one represents an unique sequence considered in the training data.

Pertubation

Figure 9: Exemplary illustration of the algorithm 1 used on the loading path presented in Fig. 8a.
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and the number of epochs for training. The architecture of the Deep Network consists of two

layers of LSTM units connected to a dense forward layer. We employ the sigmoid activation

function for the output layer and train for 300 epochs to reach a final training state.

In the next section we present a finite element formulation implemented to solve the linear

equilibrium equation.

4. Finite-element formulation

The Euler-Langrange equations for the strong form of the boundary value problem in

referential form can be written as

∇x · P + B = 0 in Ω, (42)

P · N = T on ΓT , (43)

u = ud on Γd, (44)

where P is the first Piola-Kirchhoff stress, B is the vector of body forces in referential form on

the body Ω, N is the outward unit normal vector on the boundary ΓT, T is the traction force

and ud represents the prescribed displacements at the boundary Γd. To obtain the weak forms

of Eq. (42), a multiplication of the residual by a weighting function ηu and by integrating the

residual over the whole domain is fulfilled. Using the Gauss divergence theorem leads to the

following equations:∫
Ω0

P · ∇xηu dΩ0 −
∫

Ω0

ρ0B · ηu dΩ0 −
∫

Γ0

T · ηu dΓ0 = 0. (45)

The equation can then be expressed in terms of external and internal nodal forces as:

ru = fu
int − fu

ext = 0, (46)

where

fu
int =

∫
Ω0

P · ∇xηu dΩ0, (47)

and

fu
ext =

∫
Ω0

ρ0B · ηu dΩ0 +
∫

Γ0

T · ηu dΓ0. (48)

By linearizing Eq. (46) at iteration i + 1 with respect to the previous iteration i and assuming

dead loads:

ru
i+1 = ru

i + ∆ru = 0, (49)
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where

∆ru = Duru
i · ∆u, (50)

and

Duru
i · ∆u =

∫
Ω0

DuP · ∆u · ∇xηu dΩ0, (51)

which represents the directional derivative of the operator ru in the direction of ∆u. The

linearization of the first Piola-Kirchhoff stress tensor leads to P = FS and the linearization

of the second Piola-Kirchhoff stress tensor can be based on the following equation:

DS · ∆u = C∆E, (52)

where the last term is the linearization of the Green-Lagrange strain tensor E and C is the

elasticity tensor which is referred to the initial configuration. The linearization of the weak

form is completed as follows:

Duru
i · ∆u =

∫
Ω0

(∇x∆u S + FDuS∆u) · ∇xηu dΩ0

=
∫

Ω0

(∇x∆u S + FC∆E) · ∇xηu dΩ0.

(53)

The linearization of the weak form in the spatial configuration can be obtained now by a

push forward in ∇s
x∆u of the linearization in Eq. (53) to the known current configuration,

which leads to the updated Lagrange formulation:

Duru
i · ∆u =

∫
Ωt

Ä
∇x∆u σ · ∇xηu + ∇s

xηu · Ĉ∇s
xηu∆u

ä
dΩt, (54)

where σ is now the Cauchy stress. The Eq. (54) is referred to the current configuration, which

leads to the following definition of the constitutive tensor:

Ĉ = 1
J
C. (55)

For a more specific and detailed discussion, the reader is referred to [64]. Employing the

Bubnov-Galerkin method, the displacement and the corresponding weight functions are dis-

cretized in each element by

uh = Nu, ηh
u = Nηu, ∇uh = Bu, (56)

where the shape function matrix N interpolates the nodal values u, and B is the gradient

operator for the displacements.
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Substituting the relations into the weak formulation of the governing equations yields

Ki∆Ui+1 = fext − fint,i, (57)

where

Ki =
∫

Ωt

BT ĈB dΩt +
∫

Ωt

BT σB dΩt, (58)

represents the linear and nonlinear stiffness matrices, respectively. We solve the presented

linearization in Eq. (57) by using the Newton-Raphson iteration until the relative L2-norm

of the residual is less than a tolerance of 10−4. The step-by-step procedure is summarized in

Table 2.

As mentioned above, we need the tangent modulus tensor Ĉ = ∂σ

∂ε
to integrate our

material model into a finite element framework. Since a closed form is not a straightforward

task, we adapt the approach proposed by Sun et al. [65] to estimate the tangent moduli for

the Jaumann rate of the Kirchhoff stress, τ = Jσ. We obtain the tangent modulus by

perturbing the (i,j) components of the deformation gradient Fij . The choice of (ij) is chosen

to be (11),(22),(33),(12),(13), and (23), leading to the following equation:

C ≈ 1
α

Ä
τ
Ä
F̂ij
ä

− τ (F)
ä

, (59)

where F̂ij = F + ∆Fij is the perturbed deformation gradient and α is the perturbation

parameter. The final tangent modulus tensor is then obtained using Eq. (55). The reader

is referred to [65] for a detailed discussion on the numerical approximation of the tangent

modulus tensor.

As described above, we implement the Euler backward method to integrate the state

variables of the constitutive model. The Euler backward method is an iterative scheme.

Accordingly, the computational cost increases with highly nonlinear behavior captured by our

constitutive model. Also, besides integrating the state variables described in steps 5 and 6,

we need to integrate our constitutive model another six times by perturbing the deformation

gradient to obtain the tangent modulus tensor as shown in Eq. (59).

5. Results and discussion

In the following section, the constitutive model is first calibrated using experimental data.

Due to the chosen geometry of the specimen used within our experiments, we utilize FE
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Table 2: Summary of the step-by-step algorithm for the integration of state variables.

1. Known values at time t:

• Deformation gradient: tF, tFiso,tFe
iso and tFve

iso.

• State variables: tFv
iso,t Fvp

iso.

2. Known values at time t + ∆t:

• Deformation gradient: t+∆tF + ∆t and t+∆tFiso + ∆t.

3. Calculate trial isochoric viscoelastic and elastic deformation gradient using Eq. (4) and Eq. (5).

4. Calculate σneq using Eq. (9) at t + ∆t.

5. Update tFv
iso using the Euler backward method and Eq. (23) for Ḟv

iso obtaining Ḟv
trial/iso

as

follows:

• Calculate the trial viscous flow rate ε̇v using Eq. (21).

• Calculate the trial viscous stretching D̃v using Eq. (20).

• Calculate the trial viscous state variable:
t+∆tFv

trial/iso =
Ä

t+∆tFe
trial/iso

ä−1 t+∆tFve
trial/iso + ∆t.

• Update the state variable: t+∆tFv
iso =t Fv

iso + ∆tD̃v t+∆tFv
trial/iso.

6. Update tFvp
iso using the Euler backward method and Eq. (29) for Ḟvp

iso obtaining Ḟvp
trial/iso

as

follows:

• Calculate the trial viscoplastic flow rate ε̇vp using Eq. (27).

• Calculate the trial viscoplastic stretching D̃vp using Eq. (26).

• Calculate the trial viscoplastic state variable:
t+∆tFvp

trial/iso
=
Ä

t+∆tFve
trial/iso

ä−1 t+∆tFiso + ∆t.

• Update the state variable: t+∆tFvp
iso =t Fvp

iso + ∆tD̃vp t+∆tFvp
trial/iso

.

7. If ‖ t+∆tFv
iso −t+∆t Fv

trial/iso ‖ and ‖ t+∆tFvp
iso − t+∆tFvp

trial/iso
‖ < tolerance than GOTO

step 8 else GOTO step 3.

8. Calculate σeq using Eq. (9) at t + ∆t.

9. Update the damage variable at t + ∆t according to Eq. (13).

10. Obtain the total Cauchy stress using Eq. (9) at t + ∆t.

11. Store the state variables: t+∆tFv
iso,t+∆t Fvp

iso.

12. Compute the tangent modulus Ĉ.

13. Solve the system of equations in Eq. (57) using the Newton-Raphson method.

24



analysis to obtain realistic material parameters. Next, we present the training setup, and

the simulation results of the DL model are compared with those of the constitutive model.

Finally, the DL model’s capability in predicting the force-displacement behavior within the

finite element framework is evaluated, and its computational efficiency is compared with the

constitutive model.

5.1. Experiments

The specimens for the conditioning and mechanical tests are cut from the panels as pre-

sented in Fig. 10. Works from Poulain et al. [39] and [43] suggest that the necking in tension

direction of epoxy systems is instead a structural instability than material property, conse-

quently a notch is inserted to reduce the influence of material imperfections and necking on its

yield. The specimens are conditioned at 60 ◦C and 85% relative humidity until the saturated

state at a moisture concentration of 1.0% for the neat epoxy system and 1.2% for the BNPs

reinforced epoxy is reached. The overall conditioning time was 115 days. Finally, mechanical

loading-unloading tests are produced according to testing standard DIN EN ISO 527-2, using

an extensometer to measure the elongation of the specimens and a load rate of 1 mm/min. We

apply a total of six cycles by loading to a certain amplitude and unloading until the loading

force reaches zero.

20

115

230

60

10

�5

Figure 10: Planar dimensions of the specimen for conditioning and mechanical loading-unloading tests with

a thickness of 2.3 mm. All dimensions are in millimeters.

5.2. Calibration of the viscoelastic-viscoplastic damage model

As presented above, the specimen used in our experiments includes stress concentration

at the center of the sample to more accurately calibrate the damage parameter. Accordingly,

the parameter identification of the constitutive model is conducted in two steps as follows:
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1. The material parameters are initially pre-calibrated using the rheological model and

experimental data. For this, the objective function, defined by the root mean square

deviation between the experimentally measured and numerically predicted stress values,

is minimized using a genetic algorithm. The population size is set at 200, and a maximum

number of generations of 500 is used. To ensure that the optimum solution is obtained,

the number of steps to determine whether the genetic algorithm is progressing is set to

500. The pre-calibration allows obtaining a precise upper and lower bound for the next

parameter identification step.

2. Since the presented geometry of the specimens used in our experimental data cannot

be considered within our one-dimensional rheological model, the final calibration of the

material parameters is fulfilled using FE analysis. Also, the damage is concentrated at

the center of the sample and can only be accurately calibrated using FE analysis. There-

fore, this step re-optimizes the shear and volumetric bulk modulus of the equilibrium,

the shear modulus of the non-equilibrium stress contribution, and the damage param-

eter using FE simulation results and experimental data. Here, an objective function is

defined by the root mean square deviation between the experimentally measured and

numerically predicted force values.

It is worth noting that although the viscous dashpot parameters can be identified using the

experimental data, Unger et al. [42] performed a set of atomistic simulations and predicted

the parameters of the Argon viscoelastic model. Accordingly, we adopt the parameter ε̇0 and

the equivalent activation energy ∆H. Furthermore, since FE simulations are computationally

expensive, we calibrate the viscoplastic parameters manually by doing multiple sensitivity

simulations to reduce the calibration time.

Considering the double symmetry of the specimen at mid-length, symmetric boundary

conditions are applied in our finite element analysis to reduce the computational cost while

keeping the full solution of the model. A three-dimensional simulation is performed to cover

the transverse strain effect and loading conditions accordingly to the experiments are applied

as presented in Fig. 11. The presented model is discretized with 16104 eight-noded hexahedral

(Q8) elements. The mesh is refined at the right part of the model, where a stress concentration

area is observed and 8 elements are implemented to discretize the thickness direction. We

multiply the horizontal displacement at the loading point by two to measure the displacement.

The final identified material parameters are listed on Table 3 and the corresponding force-
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displacement behavior is presented in Fig. 12.

The constitutive material model is validated using experimental data for the epoxy system

with 0% BNPs at the saturated condition and the epoxy system including 10% BNPs at dry

and saturated conditions. The prediction of the calibrated constitutive model for the epoxy

system with 0% BNPs at saturated condition is presented in Fig. 13. The agreement between

experimental data and constitutive model prediction in the figure confirms the predictive capa-

bility of the implemented viscoelastic-viscoplastic damage model on the mechanical behavior

of the nanocomposite. Accurate results are also observed for the epoxy system containing

10% BNPs under saturated and dry conditions as presented in Fig. 14.

Although the proposed constitutive model can reasonably predict the highly nonlinear

viscoelastic-viscoplastic behavior of the material, it has some shortcomings compared with

the experimental data. The deviation from the experimental results may result from the

formulation of the constitutive model and the unique set of material parameters. Especially

in the first cycles at 0% BNPs volume fraction, the predicted stiffness and plastic strain at zero

forces are overestimated. Nevertheless, the implemented amplification approach to include the

influence of moisture and BNPs volume fraction leads to realistic results. It is visible from

the numerical response of the 10% BNP/epoxy model at the saturated condition in Fig. 14,

where both linear and nonlinear rate-dependent behaviors are appropriately captured.

Figure 11: Loading and boundary conditions imposed on the model(top) and the 3D model as used in our

finite element analysis(bottom).
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Table 3: Materials parameters of the viscoelastic-viscoplastic damage model

Parameter Value Equation References

Equilibrium shear modulus µ0
eq(MPa) 760 15

Non-equilibrium shear modulus µ0
neq(MPa) 790 16

Volumetric bulk modulus κv(MPa) 1154 10

Viscoelastic dashpot ε̇0
(
s−1) 1.0447 x 1012 21 [42]

∆H(J) 1.977 x 10-19 21 [42]

m 0.657 21

y0 75 22

x0 0.2369 22

bs 0.06786 22

as -48.23 22

Viscoplastic dashpot a 0.179 27

b 0.910 27

σ0(MPa) 5.5 27

Damage A 320 13

Moisture swelling coefficient aw 0.039 3 [45]
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Figure 12: Force-displacement curve of dry epoxy system without BNPs at a load rate of 1 mm/min and

room temperature under cyclic loading-unloading conditions.

5.3. Training and validation of the deep learning model

The trainable parameters ω for the LSTM units and the dense forward layer are trained

using the mean average error (MAE) as the loss function for each batch size M and the number

of features. The MAE is proven to be not as sensitive as the mean squared error regarding
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Figure 13: Experimental force-displacement response of the epoxy system without BNPs at saturated con-

dition and finite element response obtained by the calibrated constitutive model at a load-rate of 1 mm/min.
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(a) 10%BNPs at dry condition
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(b) 10%BNPs at saturated condition

Figure 14: Comparison of experimental and numerical force-displacement response of the epoxy/BNPs

system for loading-unloading tests with increasing amplitude at dry/saturated conditions and a load-rate of 1

mm/min.

outliers [12]. The error ε is computed using the loss function, and the contribution of each

trainable parameter is backpropagated to calculate the gradient and train the deep network.

The optimization algorithm implemented is the Adam optimizer [66] with a learning rate of

η = 0.001 which is dropped to η = 0.0001 after 200 epochs. The loss function adopts the L1

loss, yielding smooth results according to cross-validation.

Firstly, we tune the number of hidden units for both layers at a fixed batch size of M = 64.
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The presented results of the training are shown in Fig. 15, and the mean average error is

calculated as follows:

MAE = 1
N

N∑
i = 1

∣∣∣σpred
tot − σtarg

tot

∣∣∣ , (60)

where σpred
tot is the predicted value by the DL model at the ith timestep of a sequence in the

training data, σtarg
tot is the correct corresponding value and N is the number of data. The

mean(MAE) is calculated by taking the mean value of the last 50 epochs. It can be observed

that the most accurate results are obtained by using 150 LSTM units. Consequently, we

continue the training using 150 units for each layer, which is also preferable due to less

trainable parameters and leads assumingly to a better performance regarding computational

efficiency compared with a larger number of units.
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Figure 15: Performance of the two-layer LSTM architecture as a function of the number of LSTM units per

layer.

Considering the choice of the batch size, representing the number of training examples in

one backward pass, the DL model is trained on varying batch sizes of [32, 64, 128]. The results

are presented in Table 4 and show that using a batch size of 64 leads to the best results in the

training data. The final results using 150 LSTM units and a batch size of 64 are presented in

Fig. 16. As can be seen, lowering the learning rate after 200 epochs helped the DL model to

achieve an accurate result leading to a low plateau at a loss of 5 · 10−2.

As mentioned above, the validation of the model is done using 10% of the generated data

leading to a loss of 8 · 10−2 MPa. Hence, the following results are obtained using validation

data.
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Table 4: Summary of the training data results for three different batch sizes

Batch size

32 64 128

mean(MAE) 8 · 10−2 5 · 10−2 7 · 10−2
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Figure 16: Training loss during the training of the DL model. The loss converges towards a plateau after

200 epochs.

Fig. 17(a) and Fig. 17(b) show the stress-strain behavior of BNP/epoxy nanocomposites

under uniaxial cyclic loading predicted by the constitutive and DL model, respectively. A

comparison between the simulation results reveals that the DL model is able to learn the

nonlinear rate-dependent material behavior at both dry and saturated conditions. Fig. 18

also presents the behavior of the epoxy under a complex cyclic path of uniaxial and shear

deformations. In this case, we visit a total of P = 5 points for each deformation gradient

component in the 9-dimensional spatial space as presented in Table 1, resulting to an unique

loading path for each direction and thus making the deformation scenario as complex as

possible. As can be seen, the DL model can predict the stress tensor accurately under complex

loading scenarios and can, therefore, replace the constitutive model.

Next, a set of uniaxial cyclic loading-unloading results is presented in Fig. 19 to evaluate

the DL model’s capability to predict the epoxy’s rate-dependent behavior. As can be seen, the

DL model is able to accurately predict the rate-dependent behavior in excellent agreement with

the constitutive model for a wide range of strain rates. Furthermore, the imposed deformation
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(a) Constitutive model results
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Figure 17: Uniaxial loading results of the constitutive model and DL model for different amount of BNPs

volume fraction at dry and moisture saturated state. E11 represents the Green strain element and is obtained

using Eq. (28). The strain rate is ε̇ = 5 × 10−4 s−1.
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Figure 18: The neat and dry epoxy under a complex three-dimensional combination of shear and axial cyclic

loading. The diagonal terms of the stress tensor are presented in (a) and the shear terms are shown in (b).

The effective strain rate derived from the frobenius norm of the Green strain tensor is ε̇F = 3 × 10−4 s−1.

path includes compression, confirming the predictive ability regarding the transition of the

stress state from tensile to compression.

5.4. Computational efficiency

In the following subsection, the computational efficiency of the DL model is compared with

the constitutive model at the rheological level. As stated earlier, the Euler backward time
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Figure 19: Comparison of the constitutive model against the DL model for the uniaxial case of the neat and

saturated epoxy system under cyclic loading-unloading conditions at three different strain-rates.

integration scheme is used to formulate the constitutive model. Fig. 20 presents a deformation

path with a deformation step of ∆F = 8.7 · 10−5 and a timestep of ∆t = 1.28s. It should

be noted that the chosen timestep is not applicable for an explicit time integration since no

convergence within the specified accuracy can be reached. The Euler backward integration

scheme and the forward propagation of the DL model are implemented in an in-house MAT-

LAB code. The simulation results show that the computational efficiency strongly depends on

the deformation path’s complexity. While simple deformation paths, such as uniaxial loading,

lead to no or low acceleration of the model, a reduction of the computation time of the model

with complex loading paths by a factor of 3.5 is detected. The path includes a combination

of all deformation gradient components. It can be regarded as one of the most complex paths

since it contains all deformation directions in the 3D stress-strain space. Table 5 shows the

CPU-time needed for two combinations of BNPs volume fraction at dry and saturated state.

We note a reduction of the computation time by a factor of 3.5 for 10% BNPs volume fraction

at dry state, while other combinations indicate no or low accelerations. Another noteworthy

observation is the constant CPU time of the DL model, which is expected as the forward

propagation includes no iterative scheme, and only matrix multiplications are repeated in

each loading step.

This behavior is elucidated by observing the numerical time passed at each timestep within

the Euler backward algorithm compared with the DL model. The results are presented in
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Table 5: Comparison of the CPU time for the DL and constitutive model in seconds.

BNPs volume fraction

0% 10%

Dry
Constitutive model 0.57 1.24

DL model 0.35 0.35

Saturated
Constitutive model 0.31 0.44

DL model 0.35 0.35
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Figure 20: Exemplery loading path including all nine deformation gradient components presented using the

Eq. (28) as Green strain components.

Fig. 21. In each combination, the Euler backward algorithm needs a low number of iterations

at the beginning of each run, possibly due to the inactivity of the viscous or viscoplastic

dashpot presented in Fig. 1. After approximately 300 steps, the integration time per step

increases up to a peak of 0.28 s, which is an indication that the viscous and viscoplastic

dashpots are activated, and the Euler backward algorithm requires multiple iterations to

fully integrate the model within a tolerance of 1 · 10−5. It also implies that an explicit time

integration is not a reasonable choice for the chosen timestep. Also, a proportional increase

in integration time per step is observed by increasing the model’s stiffness. Accordingly, the

simulation time per timestep for the DL model is constant at 7.7 · 10−4s.
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Figure 21: Time needed for each loading step within the Euler backward algorithm to integrate the consti-

tutive model compared with the DL model.

5.5. Accuracy of the proposed DL model

The accuracy of the proposed DL model has already been verified in Section 5.3. Here,

the accuracy of the trained and validated DL model within the FE framework is evaluated by

comparing the results of the force-displacement curves for the 3D model presented in Fig. 11.

FE simulations are performed by implementing the trained deep network within a FE code

in C++ and utilizing DealII libraries [67] combined with the Eigen library for the matrix

multiplication [68].

Table 6: MAE of the DL model compared to the constitutive model

BNPs volume fraction

0% 10%

Dry 20.9 5.9

Saturated 17.8 14.6

The obtained force-displacement curves based on the DL and constitutive models are
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presented in Fig. 22. For a better comparison, the MAE of the force-displacement curves

is detailed in Table 6, suggesting a good agreement between simulation results obtained by

the two material models. The FE simulation results confirm the predictive capability of the

DL model in capturing the nonlinear behavior of BNP/epoxy nanocomposites. It should

be mentioned that a converged solution within the Newton-Raphson method can only be

reached with the proposed perturbation algorithm within the data generation described in

algorithm 1. It implies that the stress-strain behavior can be characterized by generating

data without the algorithm 1. Nevertheless, an approximation of the tangent modulus Ĉ

without the algorithm 1 is solely possible for single-element case studies and failed for the

specific three-dimensional model presented above.

Conclusively, the agreement between the experimental data and FE facilitated by the DL

model assures a significant increase in computational efficiency while only a marginal decrease

in accuracy is observed.

Also, it is observed that the CPU time of FE simulations using the DL model is decreased

by a factor of 1.5 for the model with 10% BNP volume fraction at the dry condition. Also,

a reduction by a factor of 1.3 is noticed for the model without nanoparticles at the saturated

condition. The simulations are run on 30 CPUs of Intel Cascade Lake Xeon Gold 6230N

(2.3GHz, 30MB Cache, 125W) using multithreading. Although the simulation involves only

uniaxial loading, the stress concentration at the middle of the specimen increases the compu-

tational costs for the constitutive model. Accordingly, the DL model runs at constant CPU

time, reducing the wall time by a factor of 1.6 and 1.4, respectively.

6. Summary and conclusions

A nonlinear viscoelastic-viscoplastic damage model has been proposed to investigate the

mechanical behavior of BNP/epoxy nanocomposites with moisture content at finite defor-

mation. We implemented the Guth-Gold model to predict the impact of nanoparticles and

moisture content on the material behavior. Also, the athermal yield stress related to the vis-

coelastic Argon model was modified by proposing a nonlinear sigmoid function and the chain

stretch as the driving force. The results show that the proposed constitutive model is able

to accurately predict the nonlinear cyclic behavior of the nanocomposite. To accelerate finite

element simulations, a LSTM enhanced network was trained to predict the highly nonlinear

material behavior of the nanocomposites. The traditional viscoelastic-viscoplastic model uti-
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(b) BNP(0%)/epoxy at saturated condition
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(c) BNP(10%)/epoxy at dry condition
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Figure 22: Force-displacement response for the DL- and constitutive model associated with specimens made

of BNP/epoxy at dry and saturated conditions.

lizing the Euler backward algorithm for integration of the constitutive equations was replaced

with the trained DL model enhanced by two layers of LSTM units. We proposed a data

generation framework using a space-filling approach and perturbing loading paths to obtain a

reasonable set of data for the supervised learning of the DL model to predict the stress-strain

behavior and to compute the consistent tangent modulus. Benchmarks examples show that

the elimination of the iterative integration algorithm with the trained DL model leads to a

significant increase of the computational efficiency and the DL model is capable to predict

complex cyclic loading paths for a wide range of strain-rates. Also, the implemented approach
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to perturb the loading path within the data generation algorithm leads to an accurate com-

putation of the consistent tangent modulus as needed in the finite element simulations. While

the proposed data generation approach can be used for most of the constitutive models to

fully capture the three-dimensional stress-strain behavior, a reasonable question is whether

the generation of data and the training is worth the time. It should be noted here, that the

speed up is especially useful if we are interested in complex constitutive models as presented

here, where the numerical integration is a significant part of the computational cost. Thus,

employing a DL model for simple constitutive models, e.g. linear elasticity, can lead to an

increase of the computational cost. Also, the proposed DL model can be further extended to

adapt to different materials by using additional inputs e.g. material parameters. This can

be easily achieved, since the generated deformation paths are saved and we can rerun the

algorithm in Table 1 starting from STEP 6 to generate the output for a different material.

Another feature is that the model can be also extended to adapt to different ambient con-

ditions like temperature dependency, making the model as universal as possible. Since the

constitutive model does already include the temperature dependency within the viscoelastic

Argon model as presented in Eq. (21), we can generate additional training data to capture

this dependency as well without the need to change the constitutive model at hand.

Since the constitutive model is implemented in FE analysis in a modular fashion, integrat-

ing the DL model was straightforward. It led to a remarkable increase in the computational

efficiency of FE analysis, while only a marginal decrease in accuracy is observed.

In summary, the proposed DL model can be further developed to integrate other ambi-

ent conditions, such as temperature dependency, and should be compared with experimental

data. Furthermore, in future studies, the effect of non-uniform dispersion of nanoparticles

and moisture content at different temperatures can also be introduced within the developed

model to increase its flexibility.

Data availability

The source codes of the finite element analysis in this work are available at https://

github.com/BBahtiri/viscoelastic_viscoplastic_model.
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