elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Accessibility | Contact | Deutsch
Fontsize: [-] Text [+]

Development and Implementation of Techniques for the Simulation and Processing for Future SAR Systems

Kinnunen, Tim (2023) Development and Implementation of Techniques for the Simulation and Processing for Future SAR Systems. Master's, Luleå University of Technology.

[img] PDF - Only accessible within DLR
12MB

Abstract

Synthetic Aperture Radar (SAR) is a type of radar system that can generate high-resolution images with which one can detect subtle changes on the scale of centimetres from space. It can operate in any weather condition and during both day and night, making it unique compared to optical sensors. SAR is used for applications such as environmental monitoring, surveillance, and earth observation. Its ability to penetrate clouds and, to some extent, vegetation, allows for insights into terrain, vegetation structure, and even subsurface features. The importance of modelling the generated data of a SAR system before initiating the construction and development of it cannot be overstated. This thesis presents the implementation of the Reverse BackProjection Algorithm (RBPA) designed to generate raw SAR data efficiently and accurately. The RBPA stands out with its flexibility, enabling researchers and designers to simulate and gauge the SAR system's effectiveness under diverse scenarios. This provides an easy way of fine-tuning configurations for distinct needs concerning scene geometries, orbits, and radar designs. Two versions of the RBPA were implemented, differing slightly in the theoretical approach of azimuth defocusing. On top of this, a bistatic mode and Terrain Observation by Progressive Scans (TOPS) acquisition mode was also implemented. The inclusion of these two modes were specifically due to their relevance for the upcoming European Space Agency (ESA) SAR mission, Harmony. The addition of the TOPS mode required a comprehensive design of the antenna framework. Moreover, this implementation also paves the way for simpler integration of modes in the future. The two versions of the RBPA were profiled, revealing the optimal system and parameter configurations.

Item URL in elib:https://elib.dlr.de/197661/
Document Type:Thesis (Master's)
Title:Development and Implementation of Techniques for the Simulation and Processing for Future SAR Systems
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Kinnunen, TimUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:28 September 2023
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Number of Pages:116
Status:Published
Keywords:SAR, Reverse Backprojection Algorithm, SAR simulator
Institution:Luleå University of Technology
Department:Department of Computer Science, Electrical and Space Engineering
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - SAR methods
Location: Oberpfaffenhofen
Institutes and Institutions:Microwaves and Radar Institute > Radar Concepts
Deposited By: Kinnunen, Tim Gustav Antero
Deposited On:29 Sep 2023 10:23
Last Modified:24 Jan 2024 11:30

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
OpenAIRE Validator logo electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.