Lehmann, Nils and Gottschling, Nina Maria and Depeweg, Stefan and Nalisnick, Eric (2023) A Comparison of Uncertainty Quantification Methods for Earth Observation Image Regression Data. ICCV - Workshop on Uncertainty Quantification for Computer Vision, 2023-10-02 - 2023-10-06, Paris, Frankreich.
PDF
- Only accessible within DLR
3MB | |
PDF
- Only accessible within DLR
4MB |
Abstract
Over the past decade, neural networks (NNs) have been successfully applied to earth observation (EO) data and opened new research avenues. Despite the theoretical and practical advances of these techniques, NNs are still considered black box tools and by default are only designed to give point predictions. However, the vast majority of EO applications demand reliable uncertainty estimates that can support practitioners in decision making tasks. This work provides a theoretical and quantitative com- parison of popular uncertainty quantification methods for NNs with the focus on univariate image regression problems in the EO domain. More specifically, we consider the task of predicting tree-cover percentage from 4 channel satellite imagery. Given a base architecture consisting of a Ran- dom Convolutional Feature (RCF) extractor and a subse- quent Multi-layer Perceptron Network (MLP), we apply a wide range of uncertainty quantification (UQ) methods to compare and evaluate their performance under geospatial distribution shifts.
Item URL in elib: | https://elib.dlr.de/197527/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | A Comparison of Uncertainty Quantification Methods for Earth Observation Image Regression Data | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Page Range: | pp. 1-7 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Deep Learning, Uncertainty Quantification, Earth Observation | ||||||||||||||||||||
Event Title: | ICCV - Workshop on Uncertainty Quantification for Computer Vision | ||||||||||||||||||||
Event Location: | Paris, Frankreich | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 2 October 2023 | ||||||||||||||||||||
Event End Date: | 6 October 2023 | ||||||||||||||||||||
Organizer: | ICCV | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Gottschling, Nina Maria | ||||||||||||||||||||
Deposited On: | 17 Oct 2023 11:40 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:57 |
Repository Staff Only: item control page