Lehmann, Nils und Gottschling, Nina Maria und Depeweg, Stefan und Nalisnick, Eric (2023) A Comparison of Uncertainty Quantification Methods for Earth Observation Image Regression Data. ICCV - Workshop on Uncertainty Quantification for Computer Vision, 2023-10-02 - 2023-10-06, Paris, Frankreich.
PDF
- Nur DLR-intern zugänglich
3MB | |
PDF
- Nur DLR-intern zugänglich
4MB |
Kurzfassung
Over the past decade, neural networks (NNs) have been successfully applied to earth observation (EO) data and opened new research avenues. Despite the theoretical and practical advances of these techniques, NNs are still considered black box tools and by default are only designed to give point predictions. However, the vast majority of EO applications demand reliable uncertainty estimates that can support practitioners in decision making tasks. This work provides a theoretical and quantitative com- parison of popular uncertainty quantification methods for NNs with the focus on univariate image regression problems in the EO domain. More specifically, we consider the task of predicting tree-cover percentage from 4 channel satellite imagery. Given a base architecture consisting of a Ran- dom Convolutional Feature (RCF) extractor and a subse- quent Multi-layer Perceptron Network (MLP), we apply a wide range of uncertainty quantification (UQ) methods to compare and evaluate their performance under geospatial distribution shifts.
elib-URL des Eintrags: | https://elib.dlr.de/197527/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | A Comparison of Uncertainty Quantification Methods for Earth Observation Image Regression Data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 1-7 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Deep Learning, Uncertainty Quantification, Earth Observation | ||||||||||||||||||||
Veranstaltungstitel: | ICCV - Workshop on Uncertainty Quantification for Computer Vision | ||||||||||||||||||||
Veranstaltungsort: | Paris, Frankreich | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 2 Oktober 2023 | ||||||||||||||||||||
Veranstaltungsende: | 6 Oktober 2023 | ||||||||||||||||||||
Veranstalter : | ICCV | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Gottschling, Nina Maria | ||||||||||||||||||||
Hinterlegt am: | 17 Okt 2023 11:40 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags