Ahn, Hyemin and Mascaro, Esteve Valls and Lee, Dongheui (2023) Can We Use Diffusion Probabilistic Models for 3D Motion Prediction? In: 2023 IEEE International Conference on Robotics and Automation, ICRA 2023, pp. 9837-9843. IEEE. 2023 IEEE International Conference on Robotics and Automation, 2023-05-29 - 2023-06-02, London, UK. doi: 10.1109/ICRA48891.2023.10160722. ISBN 979-835032365-8. ISSN 1050-4729.
![]() |
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/document/10160722
Abstract
After many researchers observed fruitfulness from the recent diffusion probabilistic model, its effectiveness in image generation is actively studied these days. In this paper, our objective is to evaluate the potential of diffusion probabilistic models for 3D human motion-related tasks. To this end, this pa-per presents a study of employing diffusion probabilistic models to predict future 3D human motion(s) from the previously observed motion. Based on the Human 3.6M and HumanEva-I datasets, our results show that diffusion probabilistic models are competitive for both single (deterministic) and multiple (stochastic) 3D motion prediction tasks, after finishing a single training process. In addition, we find out that diffusion probabilistic models can offer an attractive compromise, since they can strike the right balance between the likelihood and diversity of the predicted future motions. Our code is publicly available on the project website: https://sites.google.com/view/diffusion-motion-prediction.
Item URL in elib: | https://elib.dlr.de/197486/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Can We Use Diffusion Probabilistic Models for 3D Motion Prediction? | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 4 July 2023 | ||||||||||||||||
Journal or Publication Title: | 2023 IEEE International Conference on Robotics and Automation, ICRA 2023 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/ICRA48891.2023.10160722 | ||||||||||||||||
Page Range: | pp. 9837-9843 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
ISSN: | 1050-4729 | ||||||||||||||||
ISBN: | 979-835032365-8 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Diffusion Probabilistic Models | ||||||||||||||||
Event Title: | 2023 IEEE International Conference on Robotics and Automation | ||||||||||||||||
Event Location: | London, UK | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 29 May 2023 | ||||||||||||||||
Event End Date: | 2 June 2023 | ||||||||||||||||
Organizer: | IEEE | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Basic Technologies [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||
Deposited By: | Strobl, Dr.-Ing. Klaus H. | ||||||||||||||||
Deposited On: | 22 Sep 2023 12:57 | ||||||||||||||||
Last Modified: | 11 Mar 2025 17:11 |
Repository Staff Only: item control page