Valls Mascaró, Esteve and Ahn, Hyemin and Lee, Dongheui (2023) Intention-Conditioned Long-Term Human Egocentric Action Anticipation. In: 23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023, pp. 6037-6046. IEEE. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, 2023-01-02 - 2023-01-07, Waikoloa, HI, USA. doi: 10.1109/WACV56688.2023.00599. ISBN 978-166549346-8. ISSN 2472-6737.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/10030492
Abstract
To anticipate how a person would act in the future, it is essential to understand the human intention since it guides the subject towards a certain action. In this paper, we propose a hierarchical architecture which assumes a sequence of human action (low-level) can be driven from the human intention (high-level). Based on this, we deal with long-term action anticipation task in egocentric videos. Our framework first extracts this low- and high-level human information over the observed human actions in a video through a Hierarchical Multi-task Multi-Layer Perceptrons Mixer (H3M). Then, we constrain the uncertainty of the future through an Intention-Conditioned Variational Auto-Encoder (I-CVAE) that generates multiple stable predictions of the next actions that the observed human might perform. By leveraging human intention as high-level information, we claim that our model is able to anticipate more time-consistent actions in the long-term, thus improving the results over the baseline in Ego4D dataset. This work results in the state-of-the-art for Long-Term Anticipation (LTA) task in Ego4D by providing more plausible anticipated sequences, improving the anticipation scores of nouns and actions. Our work ranked first in both CVPR@2022 and ECCV@2022 Ego4D LTA Challenge.
Item URL in elib: | https://elib.dlr.de/197483/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Intention-Conditioned Long-Term Human Egocentric Action Anticipation | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 6 February 2023 | ||||||||||||||||
Journal or Publication Title: | 23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1109/WACV56688.2023.00599 | ||||||||||||||||
Page Range: | pp. 6037-6046 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
ISSN: | 2472-6737 | ||||||||||||||||
ISBN: | 978-166549346-8 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Action Anticipation | ||||||||||||||||
Event Title: | 2023 IEEE/CVF Winter Conference on Applications of Computer Vision | ||||||||||||||||
Event Location: | Waikoloa, HI, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 2 January 2023 | ||||||||||||||||
Event End Date: | 7 January 2023 | ||||||||||||||||
Organizer: | IEEE | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Basic Technologies [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||
Deposited By: | Strobl, Dr. Klaus H. | ||||||||||||||||
Deposited On: | 22 Sep 2023 12:56 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:57 |
Repository Staff Only: item control page