Pargmann, Max and Ebert, Jan and Maldonado Quinto, Daniel and Pitz-Paal, Robert and Kesselheim, Stefan (2023) In-Situ Solar Tower Power Plant Optimization by Differentiable Raytracing. Nature Communications. Nature Publishing Group. ISSN 2041-1723. (Submitted)
![]() |
PDF
- Preprint version (submitted draft)
4MB |
Abstract
Solar tower power plants deliver climate-neutral electricity and process heat and can play a key role to facilitate the ongoing energy transition. These plants reflect sunlight with thousands of mirrors (heliostats) to a receiver and can generate temperatures over 1000°C. In practice, a plant must be operated with safety margins as even small surface deformations and heliostat misalignments can locally lead to dangerous temperature peaks. These imperfections are difficult to assess and limit the plant's efficiency, which hinders commercial success in a competitive market. We present a computational technique that predicts the incident power distribution of each heliostat including the inaccuracies based solely on focal spot images that are already acquired in most solar power plants. The method combines differentiable ray tracing with a smooth parametric description of the heliostat and reconstructs flawed mirror surfaces with sub-millimeter precision. Applied at the solar tower plant in Jülich, our approach outperforms all alternatives in accuracy and reliability. The approach can be integrated into the existing infrastructure and plant control at low cost, leading to increased efficiency of existing and decreased expenses for future power plants and supports establishing a new, green energy technology. For other fields, our approach can be a blueprint. We implement a common simulation technique in the Machine Learning framework PyTorch, leveraging automatic differentiation and GPU computation. By combining gradient-based optimization methods and a tunable parametric heliostat model, we overcome the high data requirements of data-centric methods while at the same time maintaining the flexibility required for modeling a complex real-world system.
Item URL in elib: | https://elib.dlr.de/197409/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | In-Situ Solar Tower Power Plant Optimization by Differentiable Raytracing | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||
Journal or Publication Title: | Nature Communications | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Publisher: | Nature Publishing Group | ||||||||||||||||||||||||
ISSN: | 2041-1723 | ||||||||||||||||||||||||
Status: | Submitted | ||||||||||||||||||||||||
Keywords: | Solar Tower, Heliostat Field, Differentiable Ray Tracing, Surface Diagnosis, NURBS | ||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||
HGF - Program: | Materials and Technologies for the Energy Transition | ||||||||||||||||||||||||
HGF - Program Themes: | High-Temperature Thermal Technologies | ||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||
DLR - Program: | E SW - Solar and Wind Energy | ||||||||||||||||||||||||
DLR - Research theme (Project): | E - Smart Operation | ||||||||||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Solar Research > Solar Power Plant Technology | ||||||||||||||||||||||||
Deposited By: | Pargmann, Max | ||||||||||||||||||||||||
Deposited On: | 28 Sep 2023 12:29 | ||||||||||||||||||||||||
Last Modified: | 28 Sep 2023 12:29 |
Repository Staff Only: item control page