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In-Situ Solar Tower Power Plant Optimization by

Differentiable Ray Tracing

Abstract

Solar tower power plants deliver climate-neutral electricity and process heat and can play a key role
to facilitate the ongoing energy transition. These plants reflect sunlight with thousands of mirrors
(heliostats) to a receiver and can generate temperatures over 1000 °C. In practice, a plant must be oper-
ated with safety margins as even small surface deformations and heliostat misalignments can locally
lead to dangerous temperature peaks. These imperfections are difficult to assess and limit the plant’s
efficiency, which hinders commercial success in a competitive market. We present a computational
technique that predicts the incident power distribution of each heliostat including the inaccuracies
based solely on focal spot images that are already acquired in most solar power plants. The method
combines differentiable ray tracing with a smooth parametric description of the heliostat and recon-
structs flawed mirror surfaces with sub-mm precision. Applied at the solar tower plant in Jülich, our
approach outperforms all alternatives in accuracy and reliability. The approach can be integrated into
the existing infrastructure and plant control at low cost, leading to increased efficiency of existing and
decreased expenses for future power plants and supports establishing a new, green energy technology.
For other fields, our approach can be a blueprint. We implement a common simulation technique in
the Machine Learning framework PyTorch, leveraging automatic differentiation and GPU computa-
tion. By combining gradient-based optimization methods and a tunable parametric heliostat model,
we overcome the high data requirements of data-centric methods while at the same time maintaining
the flexibility required for modeling a complex real-world system.

Keywords: Solar Tower, Heliostat Field, Differentiable Ray Tracing, Surface Diagnosis, NURBS

Concentrating solar thermal power plants are an
essential part of the ongoing energy transition.
Their ability to provide direct process heat and
store it for days makes it possible to produce
carbon-neutral fuels, and generate dispatchable
electricity [1–4]. Solar tower power plants stand
out here in particular due to their efficiency, com-
petitive levelized cost of energy, and rather low
consumption of rare materials compared to pho-
tovoltaics [5–7]. Their general setup is displayed
in Fig. 1. Thousands of mirrors, the heliostats,
reflect the sunlight onto one absorbing surface, the
receiver. The radiation resulting from the super-
position of the individual heliostat focal spots can
generate thermal power of up to 150 MW on tem-
perature levels of more than 1000 °C. However,
thermal stress and heat peaks significantly reduce
the longevity of the power plant’s components,
forcing operators to run smaller temperatures and

thus lower efficiencies. To reach these tempera-
tures safely, the heliostats must hit the receiver
precisely at an intended location and with a
specific power distribution. However, due to cost
constraints affecting especially the material and
component quality of the heliostats, the required
accuracy is difficult to achieve. The two most
influential heliostat deficiencies are misalignments
and focal spot deformations.
Heliostat misalignment can be corrected for by
the so-called heliostat calibration, which is reg-
ularly carried out at solar towers. The most
common method is the camera-target method [8].
The focal spot of each heliostat is moved individ-
ually from the receiver to a white target, which
is usually located below the receiver (see Fig. 1).
Using geometric knowledge and a photograph of
the focal spot, the true heliostat alignment can
be calculated. This process is fully automated
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Fig. 1: Image of the two solar towers in Jülich.
The heliostats, shown from behind, are focusing
sunlight on the receiver surface of the left tower.
Located below the receiver is the calibration tar-
get. The inset shows a focal spot image as it is
taken during calibration.

and integrated in most solar power plants.
In principle, the deviation of the mirror sur-
face from an ideal geometry can be laboriously
inferred by fringe pattern deflectometry [9–11].
In this method, a fringe pattern is projected onto
the calibration target and its reflection on the
heliostat is analyzed using camera images. The
shape of the heliostat (represented by its normal
vectors) can be deduced from the curvature of the
stripes. While this method delivers very accurate
results, it remains challenging for industrial-scale
application because environmental variance, mea-
surements at night, high distances, dust, and dew
prevent any automated operation.

We here present a novel machine learning solution
that allows for inferring all faulty heliostat char-
acteristics within the existing heliostat calibration
infrastructure. Our technique ties in with common
ray tracing approaches, but extends them by a
differentiable formulation [12–19]. This allows us
to define a comprehensive heliostat model which

can be inferred using gradient-based optimization
procedures. These heliostats can be integrated
into a digital twin of the solar power plant and be
a key ingredient for optimizing plant operations.
Using this method, we can predict heliostat-
specific irradiance profiles with unprecedented
accuracy. It also reconstructs the heliostat’s sur-
face profile with a precision similar to that of
standard deflectometry, yet only requires calibra-
tion images taken on a day-to-day basis.
To evaluate our method, we conducted an exper-
imental proof of concept at the research power
plant in Jülich. In complementary simulations,
we show that our approach is applicable for the
whole heliostat array. The approach consistently
improves the annual irradiance forecast, allowing
for higher plant efficiencies at minimal cost. This
contribution is a crucial step towards the devel-
opment of concentrating solar power plants into
a cost-efficient, environmentally friendly, alter-
native source of process heat and dispatchable
energy.

Differentiable Ray Tracing for
Solar Towers

We here outline a physical model of solar towers
as in Fig. 1 and its differentiable implementation.
The calibration target’s surface is matte and well
approximated by a Lambertian surface, where the
reflected light is proportional to the surface irra-
diance, independent of the observer’s viewpoint.
The irradiance at position ~x on the calibration
target can be obtained by integrating the radi-
ance L over all incoming directions ~ω, multiplied
by the cosine of the incident angle θ. Neglect-
ing ambient lighting, the incident irradiance can
be constructed by finding the intersection ~r of
the incident direction with the heliostat, and –
if within the heliostat surface – constructing the
reflected direction ωr by evaluating the local helio-
stat normal and evaluating the solar radiance L�
in the reflected direction. This reads as

E (~x) =

∫
Ω

L� (~ωr (~ω,~r)) cos θ d~ω.

This can include taking into account a model
of the deviation of the surface from ideally flat,
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which we express by a reflection function ~ωr

that depends on the heliostat surface point ~r.
In this formulation, most ray directions will not
contribute to the irradiance of a point on the
target surface, as the solar disk is small. Alterna-
tively, the integral can be cast as an integral over
incident directions. Then, by using importance
sampling [20], the rays’ directions can be sampled
with a probability proportional to the respective
solar radiance. This minimizes the required num-
ber of rays. For each ray, the intersection with the
target surface ~x is evaluated. Up to this point, the
presented ray tracing scheme is common in the
domain [12–19]. A modified last step, however, is
crucial to ensure differentiability of the approach.
Typically, the discrete rays are binned by their
intersection point ~x on the receiver with a hard
binning scheme. There, the incident ray power is
accumulated in the nearest point in a grid on the
target. In our formulation, we employ a soft bin-
ning function w, that smoothly distributes the
power of ray ~k cast from heliostat point ~l to more
than one grid point on the target. Hence, for each
grid point ~xij , the irradiance is a weighted sum
over all rays cast from heliostat surface point ~rl in
direction ~t~k,

E (~xij) ∝
∑

ray ~k,

position ~l

w
(
~xij , ~x

(
~rl,~t~k

))︸ ︷︷ ︸
wijkl

cos θ.
(1)

Our employed differentiable binning scheme is
inspired by a technique employed for coupling
the Lattice Boltzmann equation with molecular
dynamics simulations and distributes each incom-
ing ray linearly to the 4 closest, discrete points on
the receiver’s surface [21].
In the description above, we have assumed that
for each position of the heliostat, it is possible to
construct the reflection of a ray, which requires
a differentiable surface model. Furthermore, it
is physically justified that heliostat surfaces are
smooth. We therefore choose to model the helio-
stat surface in terms of Non-Uniform Rational
B-Spline (NURBS) surfaces [22]. This formula-
tion automatically ensures a smooth, differen-
tiable surface model and gives maximum flexibility
to include deformations with a variable degree of
detail.
In the optimization procedure, we define the
optimization objective as a distance between an

observed image and an image reconstructed by
the ray tracing described above, which we dub
the loss. Subject to optimization are the control
point positions of the NURBS. As the formulation
is differentiable, the loss can be minimized with
gradient-based optimization algorithms. In this
formulation, it is possible to include regularization
terms. For optimization problems, such terms can
reduce the complexity of possible solutions and
mitigate the ill-posedness of the problem. In the
case of the heliostat, we prefer solutions that min-
imize the deviations from an ideally flat heliostat
surface. This is realized as a term that penalizes
deviations of the NURBS control points from ideal
positions. The corresponding regularization fac-
tors can be tuned to the details of the optimization
problem.
The code is implemented in the Machine Learning
framework PyTorch [23].

Irradiance Prediction at the
Solar Tower in Jülich

In this section, we benchmark our approach at
the solar tower in Jülich. This research power
plant can generate rated electrical power of up to
1.5 MW by using over 2000 heliostats at a distance
between 25 m–250 m. Each heliostat has four indi-
vidual facets, which are canted, i.e. tilted to a joint
focus, and use an astigmatically corrected target
alignment [24].The canting leads to overlapping
focal spots of the individual facets. Therefore, the
minimum of the optimization can not be expected
to be unique – this optimization problem can be
underdetermined. For the validation procedure,
we selected a heliostat in the first row of the
field. In end of October (2021-10-21), we measured
the heliostat’s surface using deflectometry. On a
later day with clear sky conditions (2022-03-04),
we executed the regular calibration procedure for
the same heliostat at two times of the day. The
images provided by these calibrations are used for
training. After that, the next regular calibration
was due in approximately 8 months. Two images
acquired during those calibrations are used as the
test data set.
Fig. 2 shows the recorded images in the left-
most column (Measurement). The average value
of the pixel intensity was subtracted from the
recorded raw images (compare Fig. 1) and the
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Fig. 2: Comparison of the irradiance profiles of
a Measurement photograph and ray tracing with
a flat surface (Ideal), a measured surface (Deflec-
tometry), and the result of our optimization pro-
cedure (Prediction). The deviation between the
measurement and each generated image is quanti-
fied using the L1 distance. The image marked with
a red star was previously shown in Fig. 1.

pixel values were normalized. The column Ideal
displays the irradiance inferred by a ray tracing
method that assumes a flat heliostat. This column
also represents the state-of-the-art. In the col-
umn Deflectometry, we report ray tracing results
that use the surface obtained from the deflec-
tometry measurement. The right-most column are
our data-driven optimization results. As the non-
data-driven approaches have no information about
misalignments, our ray tracing pipeline was used
to correct the heliostat’s alignment and rotation
in all results for better comparability. For evalua-
tion, we use the mean absolute error, and report
it as L1. The images are normalized to the incom-
ing intensity and scaled by the calibration target
plane. This way, the loss is independent from res-
olution and size.
It is evident that using the deflectometrically mea-
sured surface in our ray tracer delivers excellent
results. As the literature suggests, we can confirm
that these surfaces can be used for high-quality

irradiance prediction. However, our method per-
forms comparably and does not need additional
measurements requiring conditions which are dif-
ficult to meet.
In simulation, we can furthermore study more
characteristics of our method by performing train-
ing on simulated data with the measured surface.
The results are summarized in Fig. 3. The left
panel (a) shows how the differentiable ray tracing
approach performs on the shortest and the longest
day, as well as at equinox, when the deformations
are especially noticable. If trained on 16 images,
the prediction’s error metric L1 can be reduced by
almost an order of magnitude compared to simu-
lations based on ideally flat surfaces. Depending
on the distance, the characteristics of the spot
change considerably. The focal spot softens and
becomes larger, which can be seen in the upper
right panel (b).
In the graph in panel (c), we study the perfor-
mance of the approach quantitatively by varying
both the heliostat position and the number of
available training images. The measured heliostat
is in the first row of the field (25 m north of the
solar tower). In the simulations, we vary its posi-
tion, and accordingly canting angle as well as focal
length. We also observe the L1 reduction by one
order of magnitude down to a training set size of
only 4 images. Our method is even able to recon-
struct the focal spots with high precision using
only 2 training images. The test loss was calcu-
lated on a disjoint data set of five images which
were not used during training.

Heliostat Surface
Reconstruction

Our simulation method is based on physical prin-
ciples, and we therefore expect a reconstruction
of a physically meaningful surface. However due
to the overlap of the focal spots of the canted
facets and the blur increasing with distance, it is
not clear that the optimization problem exhibits
a unique, physically meaningful minimum. Our
experiments indicate that – under favorable con-
ditions – the real surface can be obtained. The
surface already used in the previous chapters is
shown in Fig. 4 by its deviation from the ideal
surface. In the preparation process, we manually
applied a geometric modification by tightening the
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Fig. 3: (a) Comparison of the irradiance profile on three days of the year. We compare the simulation
with the measured surface, a simulation with an ideal surface and the result of our approach trained on
16 images. Our method predicts the complex structures accurately. (b) Simulated and inferred irradiance
profiles at different distances between heliostat and target. (c) Quantitative assessment of prediction
quality for varying distances and number of training images.

adjustment screws at the center of all four facets
to obtain a characteristic “bump” deformation
of approximately 2 mm, which is in the range of
heliostat surface defects. This way, we made sure
that already at first glance, a qualitative judg-
ment of a surface reconstruction is possible. Below
the shown measured surface are two columns with
reconstructions created by our method. Recon-
structions in the left column are obtained by
varying the number of training data, while for
the right column, the distance of the heliostat to
the tower was varied. The results are summarized
quantitatively in the graph below. The surface can
be reconstructed in more than 100 m distance to
the tower. Beyond that, the reconstruction quickly
degrades. Interestingly, the quality of the irradi-
ance reconstruction as displayed in Fig. 3 is barely
affected.
The surface reconstruction is based on simulated
data supported by a deflectometric measurement
of the surface. With the available imagery from
the calibrations, a qualitative surface reconstruc-
tion of the surface was not possible (not shown).
By gathering more data and careful tuning of
the optimization procedure, we expect this to

be possible. However, our previous findings indi-
cate that surface reconstruction is not required
for accurate irradiance predictions. Preliminary
experiments indicate that difficulties in recon-
struction are largely caused by the canting and
related ambiguity. By hypothetically positioning
the calibration target at a distance outside of the
focal plane or employing heliostats without cant-
ing, the surface reconstruction works significantly
better and requires smaller training sets.

Conclusion & Outlook

In this article, we show that differential render-
ing is an approach that is very well suited for
the in-situ application at solar towers. By using
images from the fully automated heliostat calibra-
tion, which is already implemented in most solar
power plants, our approach is capable of predict-
ing the irradiance with unprecedented accuracy.
Our approach outperforms state-of-the-art ray
tracing approaches in day-to-day use by far. The
results on experimental data from the plant show
that the method yields high-quality irradiance
predictions, and our in-silico experiments indicate
that these findings can be generalized to the entire
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Fig. 4: (a) Surface reconstructions from focal spot
images depending on data set (left column) and on
the distance to the tower (right column). The sur-
faces are represented by the deviation in mrad of
their normals from the ideal surface. (b) Quantita-
tive assessment of the reconstruction quality. For
distances of 100 m or less, the surface can be recon-
structed qualitatively with at least four training
images.

heliostat field.
Furthermore, it is the very first method to derive
information from heliostat focal spots to recon-
struct the corresponding surface deformations.
Due to the computational efficiency and small
data footprint, it can be implemented with rela-
tively low cost. Existing calibration infrastructure
can be used, and only software adjustments are
required.
The methodological principles have notable

strengths: without restrictions, it is a physically
motivated model, which on the one hand has
enough parameters to represent reality completely,
and on the other hand offers a flexible regular-
ization of surfaces to deliver excellent irradiance
predictions, even in underdetermined regimes. For
industrial-scale application, the surface model and
the regularization can be optimized, taking into
account the availability and quality of data, as well
as heliostat characteristics. This is exemplified in
the Methods section (p. 6). A careful choice of a
different calibration target position can mitigate
the ambiguity and improve the surface reconstruc-
tion.
Ray tracing has occupied a central place in solar
tower research even before this study. Through
the very first realization of differentiability, it is
now possible to employ ray tracing at the solar
tower in a data-driven way. Its applicability com-
bined with high-quality results will ensure that it
takes on an even more important, key role. Dif-
ferentiable ray tracing will be a decisive step to
higher power plant efficiencies, by optimizing not
only the irradiance prediction, but also almost all
material and object properties in the solar field,
like the heliostat’s alignment. Our digital twin is
a key ingredient for an efficient, autonomous and
intelligent solar power plant.

Methods

Differentiable Simulation

Fig. 5: Sketch of the used coordinate system.
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Here, we provide the key equations that form
the proposed model. Our starting point is the
radiance, the quantity that describes the radia-
tion field in terms of power per area and solid
angle (W/m2sr). It is given by L, which depends
on the position ~x and the direction ~t. In non-
absorbing media, it is constant along any line, here
parameterized with the scalar λ.

L
(
~x,~t
)

= L
(
~x+ λ~t,~t

)
∀λ.

The radiance field L�, created by the sun visible
in direction ~t�, can be well approximated by a
Gaussian distribution:

L� ∝ e
−
(

arccos~t·~t�
θ�

)2

,

with an aperture angle of θ� = 0.00025◦. In order
to obtain the irradiance E (~x), the power per sur-
face area at position ~x on a surface, integration
over the solid angle is required. This includes the
cosine factor that is well known from e.g. the
rendering equation [25, 26]. This reads as

E (~x) =

∫
Ω

L
(
~x, ~t′

)
~nT · ~t dΩ,

with ~nT the normal vector of the calibration tar-
get and ~t′ the unit vector indicating the direction
that is evaluated. For a given point on the tar-
get, this integral can be evaluated in the following
way: for each direction on the unit hemisphere,
the corresponding intersection ~r with the heliostat
is calculated, and the solar radiance is evaluated
in the direction that is obtained from evaluating
the reflection condition for the heliostat surface.
The drawback is that, depending on the system’s
geometry, a large fraction of the evaluated direc-
tion vectors will not intersect with the heliostat
surface or will lead to directions where the solar
radiance is negligible.

The integral can be transformed into a surface
integral over the heliostat surface A. This reads as

E (~x) = 4π

∫
A

L�
(
~r,~t
)
~nT · ~t′

~nH · ~t′

‖~x− ~r‖2
dA,

where ~t is the unit vector pointing from the tar-
get point ~x to the heliostat point ~r. The vector ~t′

is the direction that is obtained as the reflection
of ~t. With a curved heliostat, this direction can
be obtained by evaluating the heliostat normal
~nH = [n1, n2, n3]

t
at position ~r and constructing

the reflection matrix M (~r) as

M (~r) =

1− 2n2
1 −2n1n2 −2n1n3

−2n1n2 1− 2n2
2 −2n2n3

−2n1n3 −2n2n3 1− 2n2
3

 .

Then, the reflected direction can be obtained as
~t = M · ~t′. By introducing the Dirac δ function,
we can formally introduce an integration over all
directions ~t′. We obtain

E (~x) = c

∫
A

∫
Ω′

L
(
~r, ~t′

)
δ (~x− ~x~t) dΩ′dA,

where ~x~t is the intersection of a ray incident from

the sun from direction ~t′ with the target plane
after reflection. Due to the large distance of the
heliostat to the target and the small change of
normal of the heliostat, the other terms can be
considered constant and absorbed in a prefactor c.
What seems like a mathematical trick at first has
a simple physical interpretation. Before, we traced
rays under all incident angles to the sun. Now, for
all positions ~r on the heliostat surface, we cast rays
in all possible directions ~t′ and evaluate each ray’s
contribution to the surface irradiance. In practice,
we evaluate this integral by sampling rays from
a directional distribution proportional to L� and
discretizing the heliostat with a rectangular grid.
We also discretize the target surface and interpret
the δ function as a set of weights that are nonzero
only on grid points in the vicinity of ~x~t. This
weight idea illustrated in Fig. 6. If ~xij is the grid
point to the lower left of the intersection point ~x~t,
the ray is distributed to the four nearest neighbors
with

wi,j = (1−∆x) (1−∆y)

wi+1,j = ∆x (1−∆y)

wi,j+1 = (1−∆x) ∆y

wi+1,j+1 = ∆x∆y

where ∆x and ∆y measure the distance of ~x~t to
~xij in units of the grid constant. With this formu-
lation, each ray carries an irradiance contribution
that is differentiable with respect to the ray’s
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direction. By introducing these weights, we arrive
at Eq. 1.

Fig. 6: Schematic drawing of the ray tracing
process, including the binning function. The cal-
culation starts at a heliostat lattice point. There,
the incoming ray is reflected and traced to the tar-
get. Then, the incoming ray’s intensity is linearly
distributed to the N = 4 nearest lattice points.
It also shows how the different coordinate sys-
tems (tower→ heliostat→ facet point) are linked
together. A rotation of the heliostat automatically
influences all downstream coordinate systems.

Heliostat Model

In this section, we will discuss our model of the
heliostat. In the setup of the solar tower in Jülich,
each heliostat has two angular degrees of free-
dom, which are set up such that a hypothetical
line connecting the sun and the heliostat exactly
is reflected into the position on the receiver or
the calibration target, where the light should be
reflected. Furthermore, each heliostat consists of
four facets, i.e. nearly planar square surfaces.
These facets are canted, i.e. they are inclined such
that the areas to which each facets reflects the sun-
light overlap. In this work, we assume that these
parameters, i.e. heliostat orientation and canting
angles are well known. In future works, we can

treat these degrees of freedom as subject to an
optimization procedure. For example, in prelimi-
nary work it was shown, that this approach is able
to replace the standard calibration procedure [27]
and optimize field design [28]. In the mathemat-
ical model, the heliostat surface appears on the
one hand as the spatial region where reflection of
rays happens. On the other hand, its surface, or
more precisely, the local normal vector ~n (~r), is the
decisive element for the direction in which rays
are reflected. As of the large distances between
heliostat and target, the resulting radiance E (~x)
is highly sensitive to changes of this vector. We
model each facet as a nearly planar surface. Each
facet is placed in the heliostat coordinate system,
which is aligned such that given a solar posi-
tion, the line connecting the sun and the heliostat
is reflected exactly into the target. Due to the
mechanical stiffness of the reflective surface, it is
justified to assume only a limited curvature of the
heliostat facets. As of this smoothness property,
we choose to model the deviation of the facet from
an ideally flat surface as a Non-Uniform Ratio-
nal B-Spline (NURBS), a class of functions that is
very well suited for representing smooth surfaces.
A NURBS surface is composed of different B-
spline functions and their weighted control points.
Each point on the NURBS surface is thereby
uniquely defined by a set of points P (control
points), W (weights), U , and V (knot vectors),
often expressed as [29]:

S = f (P,W,U, V ) . (2)

A surface is parametrized by the variables u and
v, where 0 ≤ u, v ≤ 1. Evaluated at an point
(u, v), the corresponding surface point in 3d-Space
is defined as follows (also compare Fig. 5):

S (u, v) =

∑n
i=0

∑m
j=0N

p
i (u)Nq

j (v)WijPij∑n
i=0

∑m
j=0N

p
i (u)Nq

j (v)Wij
. (3)

Here, we assume a regular square grid of control
points indexed by i and j. The polynomials Np

i
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Fig. 7: Schematic drawing of a heliostat NURBS
surface. The control points P (red dots) are shifted
in the z direction (green section on red line)
away from the ideal surface (grey). The defor-
mation affects a specified amount of neighboring
discrete points controlled by the spline degree
modulating the normal vectors (blue). One dis-
crete point is moved by ∆z, which is influencing
the ray direction by ∆w. The information about
the infinitesimal change ∆w can be traced back
via automatic differentiation to the change of the
NURBS control points.

with are defined recursively:

Np
i (u) =

u− ui
ui+p − ui

Np−1
i (u)

+
ui+p+1 − u

ui+p+1 − ui+1
Np−1

i+1 (u)

N0
i (u) =

{
1 if ui ≤ u < ui+1

0 otherwise.

(4)

Here Ni, Nj represent the B-spline basis func-
tions in the representation of Curry and Schoen-
berg [30]. The degree of the polynomial can be
chosen freely. The NURBS degree determines how
many nodes are affected by another node’s change.

The smaller the degree, the more local the modifi-
cation can be. For the mirror facet, a higher degree
therefore can be interpreted as a regularizing effect
that counteracts high local curvature. Therefore,
higher NURBS degrees have proven helpful for
small numbers of observed images.

Tangential vectors of the NURBS surfaces can be
obtained by taking the derivates with respect to u
and v and the local normal vectors are obtained
by taking the cross product.

Within the ray tracing environment, the ini-
tial NURBS surface is chosen so that N control
points are evenly distributed over the heliostat’s
surface. Schematically, this is visualized in Fig. 7
by the red dots. For the ray tracing process, any
number of points M is sampled along the sur-
face (blue points), where N � M . The position
of these M points can be identical with e.g. those
of the measured deflectometry surface data. At
these points, rays are reflected and transmitted to
the receiver/cal. target. The resulting focal spot
can be compared with a measured focal spot and
the heliostat surface adjusted accordingly. The
NURBS surface model has a number of potential
advantages that we did not make full use of. For
example, we found it sufficient to set all weights
to unity, which effectively renders our surfaces
conventional B-splines. Furthermore, the in-plane
positions of the control points were held fixed and
we did not make any use of the relative ease of
adding control points on demand, even though
code preparations have already been performed.
The results shown in the article were carried out
with different NURBS configurations. We found
that with our heliostat type. 7 × 7 NURBS per
facet with a spline degree of 3 yield an optimal
reconstruction of the surface. In contrast, 11× 11
NURBS with a spline degree of 2 are particu-
larly well suited for flux density prediction This
can be seen in Fig 8. We explain this difference
by the underdetermined nature of the problem.
The reduced number of 7 × 7 NURBS and the
higher interlocking allows us to reconstruct the
surface features that can still be unambiguously
assigned. However, details are lost that affect the
quality of the predicted focal spot. 11×11 NURBS
provide more degrees of freedom and the opti-
mization procedure converges to physically not
justified minima, which however lead to a very
accurate focal spot prediction.
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Fig. 8: Predictions of the irradiance and recon-
struction of the heliostat’s surface with regard
to the amount of NURBS parameters and the
distance to the tower.
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