elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

In-Situ Solar Tower Power Plant Optimization by Differentiable Raytracing

Pargmann, Max und Ebert, Jan und Maldonado Quinto, Daniel und Pitz-Paal, Robert und Kesselheim, Stefan (2023) In-Situ Solar Tower Power Plant Optimization by Differentiable Raytracing. Nature Communications. Nature Publishing Group. ISSN 2041-1723. (eingereichter Beitrag)

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
4MB

Kurzfassung

Solar tower power plants deliver climate-neutral electricity and process heat and can play a key role to facilitate the ongoing energy transition. These plants reflect sunlight with thousands of mirrors (heliostats) to a receiver and can generate temperatures over 1000°C. In practice, a plant must be operated with safety margins as even small surface deformations and heliostat misalignments can locally lead to dangerous temperature peaks. These imperfections are difficult to assess and limit the plant's efficiency, which hinders commercial success in a competitive market. We present a computational technique that predicts the incident power distribution of each heliostat including the inaccuracies based solely on focal spot images that are already acquired in most solar power plants. The method combines differentiable ray tracing with a smooth parametric description of the heliostat and reconstructs flawed mirror surfaces with sub-millimeter precision. Applied at the solar tower plant in Jülich, our approach outperforms all alternatives in accuracy and reliability. The approach can be integrated into the existing infrastructure and plant control at low cost, leading to increased efficiency of existing and decreased expenses for future power plants and supports establishing a new, green energy technology. For other fields, our approach can be a blueprint. We implement a common simulation technique in the Machine Learning framework PyTorch, leveraging automatic differentiation and GPU computation. By combining gradient-based optimization methods and a tunable parametric heliostat model, we overcome the high data requirements of data-centric methods while at the same time maintaining the flexibility required for modeling a complex real-world system.

elib-URL des Eintrags:https://elib.dlr.de/197409/
Dokumentart:Zeitschriftenbeitrag
Titel:In-Situ Solar Tower Power Plant Optimization by Differentiable Raytracing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Pargmann, MaxMax.Pargmann (at) dlr.dehttps://orcid.org/0000-0002-4705-6285NICHT SPEZIFIZIERT
Ebert, JanJülich Supercomputing CentreNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Maldonado Quinto, DanielDaniel.MaldonadoQuinto (at) dlr.dehttps://orcid.org/0000-0003-2929-8667NICHT SPEZIFIZIERT
Pitz-Paal, RobertRobert.Pitz-Paal (at) dlr.dehttps://orcid.org/0000-0002-3542-3391NICHT SPEZIFIZIERT
Kesselheim, StefanJülich Supercomputing CentreNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2023
Erschienen in:Nature Communications
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Verlag:Nature Publishing Group
ISSN:2041-1723
Status:eingereichter Beitrag
Stichwörter:Solar Tower, Heliostat Field, Differentiable Ray Tracing, Surface Diagnosis, NURBS
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Thermische Hochtemperaturtechnologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Intelligenter Betrieb
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Solarforschung > Solare Kraftwerktechnik
Hinterlegt von: Pargmann, Max
Hinterlegt am:28 Sep 2023 12:29
Letzte Änderung:28 Sep 2023 12:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.