Görick, Dominik and Schuster, Alfons and Larsen, Lars-Christian and Welsch, Jonas and Karrasch, Tobias and Kupke, Michael (2023) New Input Factors for Machine Learning Approaches to Predict the Weld Quality of Ultrasonically Welded Thermoplastic Composite Materials. Journal of Manufacturing and Materials Processing, 7 (5). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/jmmp7050154. ISSN 2504-4494.
![]() |
PDF
- Only accessible within DLR
- Published version
31MB |
Official URL: https://www.mdpi.com/2504-4494/7/5/154/html
Abstract
Thermoplastic composites (TCs) enjoy high popularity in the field of engineering. Due to this popularity, there is a growing need to assemble this material with the help of fast and efficient joining processes. One joining process, which has seen increased use, is the process of ultrasonic welding. To make reliable statements about the quality of the joined material, some kind of quality assurance has to be made. In terms of ultrasonic spot welding, there are already some documented approaches for observing or predicting the joining quality, but some of these most promising parameters for quality assurance are difficult to measure in the process of continuous ultrasonic welding. This is why new parameters are investigated for their potential to improve the prediction of ultrasonic-welded TCs’ quality. Thermography and sound emission data have been found to have a correlation with the produced weld quality and are fed into different machine learning algorithms. Despite the relatively small dataset, trained algorithms reach binary classification rates of over 90%, indicating that the newly discovered parameters show the potential to improve the quality assurance of ultrasonic-welded TCs in the future. This improvement may enable the establishment of the ultrasonic welding of TCs in manufacturing.
Item URL in elib: | https://elib.dlr.de/196743/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | New Input Factors for Machine Learning Approaches to Predict the Weld Quality of Ultrasonically Welded Thermoplastic Composite Materials | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 23 August 2023 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Journal of Manufacturing and Materials Processing | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 7 | ||||||||||||||||||||||||||||
DOI: | 10.3390/jmmp7050154 | ||||||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||||||
ISSN: | 2504-4494 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | machine learning; ultrasonic welding; quality prediction; thermoplastic composite materials; thermography; acoustic emission | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Aeronautics | ||||||||||||||||||||||||||||
HGF - Program Themes: | Components and Systems | ||||||||||||||||||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||||||||||||||||||
DLR - Program: | L CS - Components and Systems | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | L - Production Technologies | ||||||||||||||||||||||||||||
Location: | Augsburg | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Structures and Design > Automation and Production Technology | ||||||||||||||||||||||||||||
Deposited By: | Görick, Dominik | ||||||||||||||||||||||||||||
Deposited On: | 08 Sep 2023 13:44 | ||||||||||||||||||||||||||||
Last Modified: | 08 Sep 2023 13:44 |
Repository Staff Only: item control page