Ma, Haochun and Prosperino, Davide and Räth, Christoph (2023) A novel approach to minimal reservoir computing. Scientific Reports, 13, p. 12970. Nature Publishing Group. doi: 10.1038/s41598-023-39886-w. ISSN 2045-2322.
![]() |
PDF
- Published version
2MB |
Official URL: https://www.nature.com/articles/s41598-023-39886-w
Abstract
Reservoir computers are powerful machine learning algorithms for predicting nonlinear systems. Unlike traditional feedforward neural networks, they work on small training data sets, operate with linear optimization, and therefore require minimal computational resources. However, the traditional reservoir computer uses random matrices to define the underlying recurrent neural network and has a large number of hyperparameters that need to be optimized. Recent approaches show that randomness can be taken out by running regressions on a large library of linear and nonlinear combinations constructed from the input data and their time lags and polynomials thereof. However, for high-dimensional and nonlinear data, the number of these combinations explodes. Here, we show that a few simple changes to the traditional reservoir computer architecture further minimizing computational resources lead to significant and robust improvements in short- and long-term predictive performances compared to similar models while requiring minimal sizes of training data sets.
Item URL in elib: | https://elib.dlr.de/196566/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | A novel approach to minimal reservoir computing | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 10 August 2023 | ||||||||||||||||
Journal or Publication Title: | Scientific Reports | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 13 | ||||||||||||||||
DOI: | 10.1038/s41598-023-39886-w | ||||||||||||||||
Page Range: | p. 12970 | ||||||||||||||||
Publisher: | Nature Publishing Group | ||||||||||||||||
ISSN: | 2045-2322 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | AI, time series analysis, prediction, reservoir computing, complex systems | ||||||||||||||||
HGF - Research field: | other | ||||||||||||||||
HGF - Program: | other | ||||||||||||||||
HGF - Program Themes: | other | ||||||||||||||||
DLR - Research area: | Digitalisation | ||||||||||||||||
DLR - Program: | D KIZ - Artificial Intelligence | ||||||||||||||||
DLR - Research theme (Project): | D - short study [KIZ] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute for AI Safety and Security | ||||||||||||||||
Deposited By: | Räth, Christoph | ||||||||||||||||
Deposited On: | 14 Aug 2023 11:07 | ||||||||||||||||
Last Modified: | 14 Aug 2023 11:07 |
Repository Staff Only: item control page