Haluszczynski, Alexander and Köglmayr, Daniel and Räth, Christoph (2023) Controlling dynamical systems to complex target states using machine learning: next-generation vs. classical reservoir computing. In: 2023 International Joint Conference on Neural Networks, IJCNN 2023. IEEE. International Joint Conference on Neural Networks (IJCNN), 18.-23. Juni 2023, Gold Coast, Australien. doi: 10.1109/IJCNN54540.2023.10191257. ISBN 978-166548867-9.
![]() |
PDF
- Only accessible within DLR bis July 2024
2MB |
Official URL: https://ieeexplore.ieee.org/document/10191257
Abstract
Controlling nonlinear dynamical systems using machine learning allows to not only drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics. For this, it is crucial that a machine learning system can be trained to reproduce the target dynamics sufficiently well. On the example of forcing a chaotic parametrization of the Lorenz system into intermittent dynamics, we show first that classical reservoir computing excels at this task. In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead. It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available. This opens even further practical control applications in real world problems where data is restricted.
Item URL in elib: | https://elib.dlr.de/196431/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Controlling dynamical systems to complex target states using machine learning: next-generation vs. classical reservoir computing | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2023 | ||||||||||||||||
Journal or Publication Title: | 2023 International Joint Conference on Neural Networks, IJCNN 2023 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IJCNN54540.2023.10191257 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
ISBN: | 978-166548867-9 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | dynamical systems, time series analysis, controlling, AI, reservoir computing | ||||||||||||||||
Event Title: | International Joint Conference on Neural Networks (IJCNN) | ||||||||||||||||
Event Location: | Gold Coast, Australien | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Dates: | 18.-23. Juni 2023 | ||||||||||||||||
Organizer: | IEEE | ||||||||||||||||
HGF - Research field: | other | ||||||||||||||||
HGF - Program: | other | ||||||||||||||||
HGF - Program Themes: | other | ||||||||||||||||
DLR - Research area: | Digitalisation | ||||||||||||||||
DLR - Program: | D KIZ - Artificial Intelligence | ||||||||||||||||
DLR - Research theme (Project): | D - PISA | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute for AI Safety and Security | ||||||||||||||||
Deposited By: | Räth, Christoph | ||||||||||||||||
Deposited On: | 11 Aug 2023 12:25 | ||||||||||||||||
Last Modified: | 15 Sep 2023 08:11 |
Repository Staff Only: item control page