Haluszczynski, Alexander und Köglmayr, Daniel und Räth, Christoph (2023) Controlling dynamical systems to complex target states using machine learning: next-generation vs. classical reservoir computing. In: 2023 International Joint Conference on Neural Networks, IJCNN 2023. IEEE. International Joint Conference on Neural Networks (IJCNN), 2023-06-18 - 2023-06-23, Gold Coast, Australien. doi: 10.1109/IJCNN54540.2023.10191257. ISBN 978-166548867-9.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10191257
Kurzfassung
Controlling nonlinear dynamical systems using machine learning allows to not only drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics. For this, it is crucial that a machine learning system can be trained to reproduce the target dynamics sufficiently well. On the example of forcing a chaotic parametrization of the Lorenz system into intermittent dynamics, we show first that classical reservoir computing excels at this task. In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead. It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available. This opens even further practical control applications in real world problems where data is restricted.
elib-URL des Eintrags: | https://elib.dlr.de/196431/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Controlling dynamical systems to complex target states using machine learning: next-generation vs. classical reservoir computing | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2023 | ||||||||||||||||
Erschienen in: | 2023 International Joint Conference on Neural Networks, IJCNN 2023 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IJCNN54540.2023.10191257 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
ISBN: | 978-166548867-9 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | dynamical systems, time series analysis, controlling, AI, reservoir computing | ||||||||||||||||
Veranstaltungstitel: | International Joint Conference on Neural Networks (IJCNN) | ||||||||||||||||
Veranstaltungsort: | Gold Coast, Australien | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 18 Juni 2023 | ||||||||||||||||
Veranstaltungsende: | 23 Juni 2023 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - PISA | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||
Hinterlegt von: | Räth, Christoph | ||||||||||||||||
Hinterlegt am: | 11 Aug 2023 12:25 | ||||||||||||||||
Letzte Änderung: | 01 Aug 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags