Ulloa-Torrealba, Yrneh Zarit and Schmitt, Andreas and Wurm, Michael and Taubenböck, Hannes (2023) Litter on the streets - solid waste detection using VHR images. European Journal of Remote Sensing, 56 (1), pp. 1-19. Taylor & Francis. doi: 10.1080/22797254.2023.2176006. ISSN 2279-7254.
PDF
- Published version
19MB |
Official URL: https://www.tandfonline.com/doi/full/10.1080/22797254.2023.2176006
Abstract
Failures in urban areas’ solid waste management lead to clandestine garbage dumping and pollution. This affects sanitation and public human hygiene, deteriorates quality of life, and contributes to deprivation. This study aimed to test a combination of machine learning, highresolution earth observation and GIS data to detect diverse categories of residual waste on the streets, such as sacks and construction debris. We conceptualised five different classes of solid waste from image interpretation: “Sure”, “Half-sure”, “Not-sure”, “Dispersed”, and “Nongarbage”. We tested a combination of k-means-based segmentation and supervised random forest to investigate the capabilities of automatic classification of these waste classes. The model can detect the presence of solid waste on the streets and achieved an accuracy of up from 73.95%–95.76% for the class “Sure”. Moreover, a building extraction using an EfficientNet deep-learning-based semantic segmentation allowed masking the rooftops. This improved the accuracy of the classes “Sure” and “Non-garbage”. The systematic evaluation of all parameters considered in this model provides a robust and reliable method of solid waste detection for decision-makers. These results highlight areas where insufficient waste management affects the citizens of a given city.
Item URL in elib: | https://elib.dlr.de/196330/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Litter on the streets - solid waste detection using VHR images | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 20 February 2023 | ||||||||||||||||||||
Journal or Publication Title: | European Journal of Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 56 | ||||||||||||||||||||
DOI: | 10.1080/22797254.2023.2176006 | ||||||||||||||||||||
Page Range: | pp. 1-19 | ||||||||||||||||||||
Publisher: | Taylor & Francis | ||||||||||||||||||||
ISSN: | 2279-7254 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Solid waste; sanitation; deprivation; remote sensing; machine learning; superpixels | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Geoscientific remote sensing and GIS methods | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||
Deposited By: | Taubenböck, Prof. Dr. Hannes | ||||||||||||||||||||
Deposited On: | 18 Sep 2023 09:27 | ||||||||||||||||||||
Last Modified: | 19 Oct 2023 14:54 |
Repository Staff Only: item control page