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ABSTRACT
Failures in urban areas’ solid waste management lead to clandestine garbage dumping and 
pollution. This affects sanitation and public human hygiene, deteriorates quality of life, and 
contributes to deprivation. This study aimed to test a combination of machine learning, high- 
resolution earth observation and GIS data to detect diverse categories of residual waste on the 
streets, such as sacks and construction debris. We conceptualised five different classes of solid 
waste from image interpretation: “Sure”, “Half-sure”, “Not-sure”, “Dispersed”, and “Non- 
garbage”. We tested a combination of k-means-based segmentation and supervised random 
forest to investigate the capabilities of automatic classification of these waste classes. The 
model can detect the presence of solid waste on the streets and achieved an accuracy of up 
from 73.95%–95.76% for the class “Sure”. Moreover, a building extraction using an EfficientNet 
deep-learning-based semantic segmentation allowed masking the rooftops. This improved the 
accuracy of the classes “Sure” and “Non-garbage”. The systematic evaluation of all parameters 
considered in this model provides a robust and reliable method of solid waste detection for 
decision-makers. These results highlight areas where insufficient waste management affects 
the citizens of a given city.

KEY POLICY HIGHLIGHTS
● The best segmentation using simple linear iterative clustering (SLIC) was achieved with the 

parameter values 8,000 segments and 0.3 compactness. The following supervised classification 
of the segmented images using Random Forest yielded an average overall accuracy of 80.18%.

● The model can detect the presence of solid waste on the streets and achieved an accuracy 
of up from 73.95%–95.76% for the class “Sure”.

● The average reflectance values of the classes “Sure” and “non-Garbage” overlapped. 
Removing the building rooftops from the orthotiles reduced the overlap of the classes 
mentioned above. This allowed better identification of the class “Sure”.

● Moreover, rooftop removal helped improve the accuracy of the classifier, from 59.51% to 
90.18% to 71.53% to 95.76% in study areas with and without rooftops, respectively.

ARTICLE HISTORY 
Received 22 June 2022  
Revised 11 November 2022  
Accepted 31 January 2023 

KEYWORDS 
Solid waste; sanitation; 
deprivation; remote sensing; 
machine learning; 
superpixels

Introduction

Can we monitor garbage on the streets? Can we use 
remote sensing together with an automatic or semi- 
automatic method to identify where there are sanitary 
problems in a city?

Sanitation, a human right, refers to the access to and 
use of facilities to dispose of solid waste appropriately, 
among others (Habitat, 2020). Unfortunately, not all 
institutions or governments have the capacity and 
resources to provide the necessary services to the resi-
dents, like proper sanitation, fast enough (Habitat, 2020). 
The “management of solid waste and stormwater drai-
nage”, also named “environmental sanitation” 
(HABITAT, 2008), affects the individual and the com-
munity as well.

At a local scale, municipalities are typically the ones in 
charge of the collection, transport, and final disposal of 

solid waste (HABITAT, 2008). When this service fails, 
residents might discard their garbage legally or illegally in 
open spaces, parks, and rivers or leave it accumulating on 
the streets. This waste can be transported to other areas 
because of strong winds or rain, polluting other neigh-
bourhoods, rivers, or groundwater. When left on the 
streets, it clogs the drainage system, causing flooding 
(Medina, 2010). Improper management of solid urban 
waste contaminates groundwater (Vasanthi et al., 2008), 
attracts pests and animals (e.g. rats) that transmit dis-
eases, and contaminates the air, among others (Yang 
et al., 2018). Since the decomposition of garbage also 
occurs in an anaerobic way, it produces methane, 
which in turn causes spontaneous fires. Moreover, 
some people might induce fires to burn waste and reduce 
the sanitary impact and the volume of waste in the 
dumps (Medina, 2010).
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These challenges of unmanaged waste predomi-
nantly appear in cities of the Global South, for exam-
ple, in Latin America and the Caribbean, and 
especially in poor urban areas, such as informal settle-
ments, where public services are often not compre-
hensive (Martínez Arce et al., 2010). With the 
expected increase in the global urban population to 
60.4% by 2030, the number of slums or areas with 
deprived urban infrastructure will also increase with 
sanitary problems (Habitat, 2020; Medina, 2010).

The lack of proper sanitation or poor management 
of urban solid waste deprives the population of basic 
hygiene and health, leading to a lower quality of life 
(HABITAT, 2008). This deprivation of basic needs 
and opportunities limits the individual’s ability to 
live a fulfilling life, thereby enhancing poverty 
(Anand & Sen, 1997; Kuffer et al., 2018; Taubenböck 
et al., 2018). To tackle these issues and thereby 
improve the well-being of urban inhabitants is part 
of the United Nations Agenda of Sustainable 
Development Goals (SDGs) objectives. More specifi-
cally, targets 6.3 and 11.6.1 aim for the appropriate 
disposal of waste to avoid the pollution of water 
sources (UN-Water, 2017) and promote the sustain-
able management of solid waste (Habitat, 2016). 
Therefore, identifying areas with deficiencies in sani-
tation or solid waste management (SWM) can support 
urban planning and management.

Research on remote sensing to study waste 
management in urban areas

Remotely-sensed data can provide information on the 
location where the garbage was or should be disposed. 
The use of sensor products varies with the size and 
characteristics of the solid waste being studied. For 
example, Gill et al. (2019) used Landsat TM and 
ETM+ to detect the waste that spread under landfills 
with a Ground Sampling Distance (GSD) of 100 m. 
For the monitoring of waste on land areas approxi-
mately 2 × 2 m in size, Yonezawa (2009) combined 
data from ALOS and Quickbird (0.65–2.5 m GSD). 
Karimi et al. (2022) used Landsat 8 and night light 
images from the Suomi NPP to estimate the probabil-
ity of locating illegal landfills (30–500 m GSD). In 
general, images from high-to middle-resolution sen-
sors can be used for the identification of dumping sites 
at a scale of a few metres.

In the case of dumping zones a few centimetres in 
size, very high-resolution (VHR) imagery is necessary. 
Data from airborne cameras or unmanned aerial vehi-
cles (UAVs) are available in the order of millimetres or 
centimetres, depending on the flight altitude, quality 
of the camera, and atmospheric conditions (Osco 
et al., 2021). Jakovljevic et al. (2020) used UAV (0.4– 
2.3 cm GSD) data to detect plastic bottles in water 
bodies. Torres and Fraternali (2021) used UAVs (20  

cm GSD) to detect and map illegal dumping zones. To 
achieve greater detail on the nature and extent of solid 
waste, other sources have been used, such as data from 
photos or images from surveillance cameras 
(Alfarrarjeh et al., 2018; Dabholkar et al., 2017), 
a combination of Google Street View, ImageNet, and 
self-taken images (Ping et al., 2020), or repositories of 
data like SpotGarbageGINI in GitHub (Patel et al.,  
2021). In all of these cases, objects like bottles, cartons, 
furniture, etc., were visible and easily identified.

For solid waste data analysis, several methods have 
been tested. Visual estimations of dumping areas can 
be helpful if it is not possible to access them and were 
the most successful on sites <400 m2 in Bangalore, 
India (Chanakya et al., 2017). Diverse machine learn-
ing methods, such as deep learning (DL) (Dabholkar 
et al., 2017; Jakovljevic et al., 2020; Patel et al., 2021; 
Ping et al., 2020; Torres & Fraternali, 2021; Youme 
et al., 2021), and decision trees classifiers (Alfarrarjeh 
et al., 2018), among others (Shahabi et al., 2014) (for 
a more detailed review, see (Singh, 2019; Xia et al.,  
2021). However, some studies also relied on spectral 
signature differences (Yonezawa, 2009) or visual 
change detection to estimate the dumping zones’ 
location.

Regardless of the extensive research on solid waste 
identification using remote sensing methods, when 
urban deprivation in cities is estimated, the waste 
aspect is integrated using GIS or survey-based meth-
ods (Ajami et al., 2019; Kuffer et al., 2021). For exam-
ple, Ajami et al. (2019) measured the deprivation of 
a slum using a set of surveyed and remotely-sensed 
factors. Waste management was only part of the sur-
vey (i.e. GIS data). While there is general agreement 
with this approach, we believe that the estimation of 
urban deprived areas could also benefit from a remote 
sensing – based method as a proxy of sanitary depri-
vation. After all, the more accurate the data for urban 
areas, especially the ones that struggle the most, the 
better we can provide information for policymakers, 
and stakeholders, among others (Kuffer et al., 2021).

Solid waste conceptualisation

Illegal waste disposal has different meanings depend-
ing on many factors, including the following:

(1) The legal system (i.e. how does a local govern-
ment define litter?).

(2) The components (i.e. domestic, or construction 
waste, among others).

(3) Size (i.e. from a few square centimetres to sev-
eral hundred square metres).

(4) The behaviour of the citizens (e.g. dumping 
zones on the streets or around collection 
centres).
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Different locations have laws to define illegal litter-
ing. For example, in a study of illegal dumping in 
Queensland, Australia, the authors stuck to the local 
legislation for a definition of the type of waste on 
which their research focused: “illegal waste disposal 
sites are restricted to the unlawful deposit of an 
amount of domestic waste 200 litres or greater in 
volume” (Glanville & Chang, 2015). In Colombia, 
Law 120–99 of the National Congress states where 
solid waste should not be disposed of and, if so, how 
the person should be penalised (Congreso Nacional,  
1999). Although the law does not define solid waste, 
it states that garbage should not be disposed of on 
“streets, sidewalks, curbs, parks, highways, roads, 
public baths, seas, rivers, creeks, streams, and irriga-
tion channels, beaches, squares and other places of 
recreation and other public places” (Congreso 
Nacional, 1999).

The size of the dumping zones depends on their 
characteristics. Generally, solid waste refers to 
objects or materials that are useless to humans and, 
therefore, discarded (Medina, 2010). Waste can be 
divided into several categories: household solid 
waste, municipal, or urban solid waste, special 
waste, construction waste, and hazardous waste 
(Martínez Arce et al., 2010). Waste is defined by 
sources, such as the households of city residents, 
generated during production processes, produced 
by the construction or demolition of infrastructure, 
or by activities that could affect human health. 
These can be in solid, liquid, or gaseous form 
(HABITAT, 2008; Martínez Arce et al., 2010; Xia 
et al., 2021). Even though there is research on clan-
destine littering on streets using remote sensing and 
or artificial intelligence (AI) methods, all studies 
have diverse definitions of garbage (Alfarrarjeh 
et al., 2018; Dabholkar et al., 2017; Patel et al.,  
2021; Ping et al., 2020; Torres & Fraternali, 2021).

When waste is packed in plastic bags, regardless of 
content, specific elements are escape the remote sen-
sing detection. With VHR or camera surveillance ima-
gery, it is possible to detect specific elements like 
furniture, electronics (Alfarrarjeh et al., 2018; 
Dabholkar et al., 2017), or plastic bottles (Jakovljevic 
et al., 2020). Detection focused on garbage bag accu-
mulation or small piles of litter on the streets might be 
useful, especially for low-income countries that strug-
gle with their SWM (Iyamu et al., 2020), and when 
VHR imagery is not available for detecting individual 
objects.

In this study, we developed a model for detecting 
solid waste that focuses on objects disposed on the 
streets or areas of public access that are not dumped 
into containers but instead abandoned, cornered, or 
grouped into visually defined clusters. Usually, these 
waste objects are packed into white or black bags, 
creating compact objects that can be recognised in 

several locations. For this purpose, we defined classi-
fication categories based on the probability that an 
object was garbage.

As a case study, we focused on Medellín, Colombia. 
Local media constantly reports about citizens dump-
ing their waste on the streets outside the containers 
designated for its disposal. The municipality struggles 
to identify the more affected zones and the citizens 
who litter illegally (El Tiempo, 2022). The novelty of 
this work is to develop a model of solid waste identi-
fication focused on aggregations of litter (like bags) 
dumped in streets or areas of public access and not 
dumped into containers or landfills, which have been 
the main focus of most of the recent studies in this 
topic. Moreover, our model uses imagery provided by 
the local government of Medellín, which allows for 
faster implementation of SWM programmes.

Objectives

This study aimed to test a combination of remote 
sensing data and machine learning approaches to con-
ceptualise and detect illegal solid waste dumping in an 
urban landscape. In this way, we can provide a reliable 
method to decision-makers on where insufficient 
waste management affects urban residents. Described 
below are the steps of the workflow:

(1) Supervised segment-based classification of 
orthorectified images to detect urban waste 
accumulations.

(2) Evaluate which appearance or type of urban 
waste can be detected at which accuracy levels 
with the approach mentioned above.

(3) Determine if an auxiliary data set on the build-
ings improves the capacity to identify street 
waste accumulations.

In the following chapters, we (i) describe the utilised 
materials and explain the developed methods, (ii) 
focus on the results of our experiments, and (iii) 
explain the outcome of our analysis and implications 
for policymakers or decision-makers.

Materials and methods

The following section describes the datasets and the 
algorithms used.

Study area and data

The research used data from Medellín, Colombia 
(Figure 1). This municipality belongs to the 
Department of Antioquia. Its authority extends over 
374.8 km2, which contains 16 communes and 273 
neighbourhoods in 117.4 km2. The working area or 
region of interest (ROI) comprises 23.04 km2. This is 
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defined by the area covered by the available aerial 
images. From this ROI, 25 areas of interest (AOI) 
were selected, each 0.25 km2. These AOIs are image 
subsets in which the analyses were conducted.

The research data utilised in this study include 
raster and vector datasets: (1) orthorectified aerial 
images, (2) building and rooftop footprint, and (3) 
labelled polygons (Figure 2).

The orthorectified images comprise four bands 
(blue, green, red, and near-infrared) with a pixel size 
of 8 cm. Each image is a composite created by the 
mosaic of different stripes of camera recording under-
neath an aeroplane (Servicios de Imágenes de 
Medellín, 2021) and covers an area of 3.84 km2. All 
images were reprojected to the Antioquia Medellín 
coordinate system with Datum MAGNA and 
Mercator Projection. The images were from 2019 
and were provided by the Image Service of the 
Municipality of Medellín via an ArcGIS online server 
(Servicios de Imágenes de Medellín, 2021).

Covering the entire city of Medellín, building foot-
print data outlined the borders of all buildings with 
rooftops. The dataset from 2017 is provided by the 

GeoMedellín Service of the Municipality of Medellín 
(GeoMedellin, 2020). Since this dataset did not 
include all buildings created from 2017 onwards, an 
updated building footprint data set was created based 
on semantic segmentation of the orthophotos (see the 
Building Footprint section) and merged with the offi-
cial one. Since garbage is usually found on the streets, 
rooftops are excluded by masking out the building 
footprints. This allowed the classifier to focus on the 
streets. The intent was to detect garbage that poses 
a hygiene risk to the urban population. Therefore, any 
element that resembled garbage inside a private prop-
erty was beyond the scope of this research. The train-
ing and test data included labelled polygons in two 
main categories:

(1) Areas that included garbage or urban residual 
waste (G).

(2) Areas with anything else that was not garbage 
(nG).

The G-dataset was created manually using visual 
recognition of the garbage accumulation on the 

Figure 1. Relative location and overview of the study area, Medellín. The administrative borders of the different neighbourhoods 
are shown in green.
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orthorectified images of the ROI and their posterior 
mapping. This process produced a total of 2,660 train-
ing areas for detected waste. The creation of the nG 
dataset was done using segmentation (see the section 
on Sensitivity Analysis and Segmentation) and poster-
ior selection of segments representing the diversity of 
nG elements on the 25 AOI raster images. For the 
input dataset, 500 samples of G and nG objects were 
randomly selected. Finally, this input dataset was split 
into 70% train and 30% testing.

Building footprint

The official building footprint data set provided by the 
city of Medellín dates from 2017, while the orthopho-
tos for garbage detection date from 2019. The entire 
orthophotos, at 16 cm pixel size, were split into indi-
vidual image tiles of 224 × 224 pixels with 33% overlap 
between the images to reduce border effects. Using 
this high-resolution remote sensing data, we created 
an updated building footprint dataset with a deep- 
learning-based semantic segmentation approach 
(Wurm et al., 2019, 2021) (Figure 3). A precise and 
complete data set on building footprints was essential 
for the success of the presented method for garbage 
detection.

For the process of building extraction using seman-
tic segmentation, we used EfficientNet, as introduced 
by Ronneberger et al. (2015). One of the main advan-
tages of this architecture is that it can deal with a small 

number of samples, which is advantageous in the 
context of building extraction. Furthermore, the net-
work uses data augmentation to artificially increase 
the number of training samples. The network was 
trained with local domain knowledge from Medellín 
Orthophotos with manually derived building foot-
prints. Detailed information on the model set-up and 
parameters can be found in (Wurm et al., 2021).

Urban residual waste dataset

Samples for training the model were created by visual 
interpretation. This resulted in more than 3,000 poly-
gons assigned to five different categories, indicating 
the reliability of the objects being garbage or not. 
These are termed “Sure”, “Half-sure”, “Not-sure”, 
“Dispersed”, and “Non-garbage” (Figure 4). The class 
“Sure” was composed of grouped black-and-white 
round-shaped objects easily recognisable as garbage 
elements. Comparing some “Sure” locations with 
Google Street View data confirmed that it refers to 
bags piled up and disposed of on the streets.

The classes “Half-sure” and “Not-sure” refer to the 
50% and<25% probability that the selected objects are 
garbage, respectively. These proportions are based on 
ground-based user experience, i.e. some of the authors 
have observed the littering problem in the region. 
Small, scattered elements of garbage covering an 
empty area or with ground surface visible in between 
are labelled as “Dispersed”. They are probably garbage, 
but they are not packed into bright and black bags like 
the “Sure” ones. Everything else in the scenes that do 
not belong to the categories above was labelled “Non- 
garbage”, i.e. dwellings, streets, humans, vehicles, 
vegetation, and rivers, among others.

To determine which residual waste classes could be 
identified, all waste categories were combined with nG 
polygons. The five categories mentioned above were 
combined in different ways, called “Treatments” in 
this paper. Treatments refer to the five combinations 
of the solid waste factor on which the classifier is 
applied. They were defined as follows (see also 
Figure 4):

● A: Sure + nG
● B: Sure + Half-Sure + nG
● C: Sure + Dispersed + nG
● D: Sure + Half-Sure + Not-Sure + nG
● E: Sure + Half-Sure + Not-Sure + Dispersed + nG

In conclusion, based on the ground sampling size and 
temporal frequency of the orthophotos, theoretically it 
is possible to detect solid waste objects of at least 256  
cm2 when the aeroplane camera is recording. 
However, the segmentation algorithm will also influ-
ence the final minimum size, since it clusters the pixels 
in searching for homogeneity zones. Our waste objects 

Figure 2. Vector and raster datasets used in this project: a) 
shapefiles clipped to the extent of the 25 AOIs, b) shapefile of 
building and rooftop footprint, and c) orthotiles, 8 cm GSD, 
2019, clipped to the ROI.
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have a minimum size of 760 cm2. Since it is impossible 
to detect individual elements such as plastic bottles or 
cartons with 8 cm GSD, we defined the probability 
mentioned above as classes of garbage. The categor-
isation of waste was based on the user ground-based 
experience. Finally, the VHR imagery available is 
recorded once per year. This only allows for the detec-
tion of waste at a specific time of the year.

Sensitivity analysis and segmentation

SLIC is an unsupervised k-means-based algorithm for 
spatial image segmentation. This classifier groups or 
clusters pixels based on their colour similarity and 
closeness on the image plane, thereby reducing the 
complexity of an image (Achanta et al., 2010). It is 

based on a five-dimensional space named CIELAB, 
composed of the Labxy parameters: [Lab], which 
represents the colour vector using lightness L and 
chromaticity ab, and [xy], which represents the loca-
tion coordinates of a given pixel (Achanta et al., 2010,  
2012). Segmentation results in a series of superpixels 
or regions of homogeneity. These superpixels are a set 
of pixels grouped into a segment that does not neces-
sarily represent a semantic object completely, but 
a homogeneous part (Ren & Malik, 2003).

The implementation of the SLIC algorithm in 
Python was accomplished via the skimage library 
(van der Walt et al., 2014). The SLIC function assigned 
each pixel i to the closest cluster, and in every itera-
tion, the distance was reduced (Achanta et al., 2012). 
The Python implementation of the SLIC function 

Figure 3. A subset of an orthotile: a) with buildings and b) without building footprints.
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clustered the pixels based on the parameters “number 
of segments” (ns) and “compactness” (c), where the 
first defined the approximate number of segments to 
fit in the image. The latter measures the compromise 
between colour and spatial proximity (van der Walt 
et al., 2014).

The goal was to segment each of the 25 AOIs so that 
the segments could capture even the smallest garbage 
areas. To determine which parameter values would 
generate meaningful segmentation in our AOIs, 
a supervised sensitivity analysis was applied. After 
a brief inspection of the SLIC function and how it 
performs with our data, we systematically tested the 
following values for the “number of segments”: 2,000, 
4,000, 6,000, 8,000, 10000, 12000, and 14,000. The 
following values were tested for “compactness”: 
0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 
1. This analysis was performed on the randomly 
selected AOIs 1, 25, 6, 14, and 17, resulting in 560 
segmentations.

Figure 5 illustrates the effect of different compact-
ness values for a fixed number of segments (8,000 ns). 
The lower the compactness, the larger and less homo-
genous the segments. For compactness>1, the quality 
rate (QR) and the number of squared polygons stabi-
lise until the values for both functions do not change 
further (for more detailed information, see 
Supplementary Material, Tables 1 and 2). After 

running all the segmentations, the resultant polygons 
were tested against the digitised garbage dataset. An 
accuracy metric and a measure of shape were used to 
estimate the goodness of the segmentation algorithm 
(Clinton et al., 2010).

QR was chosen as an accuracy metric because it 
considers false-positive errors. In this way, we can 
avoid segment sizes that cannot fit into a potential 
garbage object but are incorrectly identified as suitable 
for the task (i.e. we want to avoid a Type I error) 

Figure 4. Training data categories were defined in this study. There were four categories of urban residual waste”:sure””,half- 
sure””, and not-sure”, which represent 100%, 50%, and<25% probability of being garbage, respectively, as well as”dispersed”, and 
non-garbage. The first row shows the orthotile subsets, while the second row shows the same location in google street view.

Figure 5. The subset of an AOI segmented with the SLIC 
algorithm. The parameter values tested were as follows: num-
ber of segments = 8,000, compactness = [0.0001, 0.001, 0.01, 
0.1, 1].

Table 1. Selected values from the sensitivity analysis using the 
sum of the QR and the proportion of polygons that are not 
squares (NSP) in each vector scene. NS is the number of 
segments, and C is compactness.

NS C QR NSP Sum

10000 0.1 0.266 0.998 1.264
8000 0.3 0.278 0.986 1.264
12000 0.1 0.29 0.997 1.287
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(Bramer, 2016). QR is an area-based measure that 
calculates the proportion between the intersection 
and union of digitised and algorithm-segmented poly-
gons (Clinton et al., 2010; Weidner, 2008). In equation 
1, R refers to the polygons of the reference dataset, and 
S to the segments created by the SLIC segmentation 
that we want to evaluate. QR takes values with ρq ϵ 
[0,1], with 1 being the optimal segmentation 
(Weidner, 2008). 

ρq ¼
S\Rj j

S[Rj j
¼ 1 �

SnRð Þ \ RnSð Þj j

S[Rj j
(1) 

The SLIC segmentation produced squared seg-
ments for high values of the compactness parameter. 
In this case, homogeneity no longer plays a role 
(Figure 5). Since we wanted segments that considered 
the influence of the spectral signature, we excluded the 

polygons with four right-angle vertexes using for-
mula 2: 

P ¼ 4
ffiffiffiffiffi
Ai

p
(2) 

where A equals the area of each i segment. For every 
combination of ns and c, if P equals the perimeter, it is 
considered a “perfect square” or a segment with four 
right-angle vertexes. The proportion of polygons 
X that are not squares was calculated with X = 1 - P. 
Both indexes, X, and ρq, were summed. For the classi-
fication step, three of the highest values of X were 
selected (Table 1).

Factors and classification

To test if the garbage accumulations could be detected 
in aerial imagery with machine learning approaches, 

Table 2. Overall accuracy (OA) and kappa for all treatments (T), number of 
segments (NS), compactness (C), and presence (wB) or absence (woB) of the 
building footprint.

NS – C T

OA Kappa

wB woB wB woB

8000–0.3 A 88.52 95.76 0.62 0.69
B 90.18 83.51 0.65 0.6
C 83.56 78.9 0.5 0.49
D 69.83 73.92 0.35 0.51
E 65.19 72.41 0.31 0.46

10000–0.1 A 79.62 92.6 0.4 0.75
B 82.03 81.75 0.53 0.45
C 72.83 84.83 0.29 0.5
D 78.04 71.53 0.46 0.36
E 59.71 76.54 0.32 0.48

12000–0.1 A 82.04 88.62 0.45 0.68
B 73.95 80.57 0.33 0.52
C 66 79.31 0.27 0.53
D 69.22 73.35 0.31 0.38
E 59.51 77.44 0.31 0.35

Figure 6. Workflow: A sensitivity analysis of six AOIs was performed, and the building footprint was created. The input data pre- 
processing involved the following datasets and steps: a) five orthotiles, b) 25 AOIs, c) three SLIC segmentation parameter 
combinations resulting from the sensitivity analysis, d) five treatments or combinations of garbage categories, and e) two building 
conditions with buildings or without buildings footprint. All possible combinations of factors [b:e] were calculated. Six statistical 
metrics were calculated and integrated into the model for each segment. The resultant input dataset was divided into training and 
testing. This model was evaluated for a total of 750 classifications; later, the accuracy was estimated.
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a combination of many framework conditions or fac-
tors were chosen, namely (Figure 6):

● 25 AOIs in scene subsets taken from five 
orthotiles.

● Three appropriate sets of parameter values for 
SLIC segmentation (see Table 1).

● Five combinations (A – E) of garbage categories 
or treatments.

● Two building conditions: Each raster subset or 
AOI was classified as a whole or without build-
ings. In the second case, we used a building foot-
print to clip the rooftops of dwellings out of the 
scene.

● Six statistical metrics: For each segment, six 
metrics were calculated for each of the four 
bands separately. These are minimum pixel 
value, maximum pixel value, mean, variance, 
skewness, and kurtosis. The metrics provided 
a higher-dimensional feature space for classifica-
tion than only the pixel values.

The combination of the factors mentioned above pro-
duced 750 classifications. Each subset was classified 
using a random forest (RF) approach. RF is an algo-
rithm that performs a classification using decision 
trees. This classifier was trained with samples selected 
randomly and with replacement. Roughly two-thirds 
of these samples were used to create decision trees, 
while the remaining third was used to validate these 
trees, in other words, to measure the model’s accuracy. 
The model must define two variables: the number of 
decision trees and the number of variables to be used 
when making every decision that leads to a tree. For 
this study, RF was chosen for the following reasons: its 
high computational speed and accuracy, it does not 
assume a normal distribution, and its implementation 
is quite simple, since it requires only setting up two 
parameters (Belgiu & Drăguţ, 2016; Breiman, 2001). It 
has been successfully used in a wide range of remote 
sensing data, from low to VHR images, in combina-
tion with other products, to detect land cover classes 
(for an overview, see (Belgiu & Drăguţ, 2016)).

RF was implemented using the 
“RandomForestClassifier” function from the Scikit- 
learn package in Python (van der Walt et al., 2014). 
The model was applied using 500 trees and boot-
strapped samples. Using the training data, the model 
was fit using the metadata of the segments belonging 
to each of the classes mentioned above and their 
corresponding labels.

Accuracy assessment

The estimation of the classification accuracy was 
grouped into different categories: the segmentation 
values used, the type of waste, and the presence or 

absence of building footprint. A confusion or error 
matrix per group was calculated, and the following 
indexes were measured: overall accuracy (OA), pro-
ducer’s (PA), user’s accuracy (UA), and kappa coeffi-
cient. Furthermore, PA and UA were summarised in 
the F-score for better readability of the results. The 
F-score is defined as the “harmonic mean between 
precision P and recall R” (Dalianis, 2018), or PA and 
UA, and it is defined by formula 3: 

F � score : F1 ¼ F ¼ 2 �
P � R
P þ R

(3) 

The confusion matrix summarises how the samples 
from the test dataset correspond to the categories of 
the same pixels from the classified image (Bramer,  
2020). The correctly classified pixels, related to the 
total number of pixels evaluated, correspond to OA 
(Congalton, 2001). The kappa coefficient measures the 
agreement between the classified image and the refer-
ence data and has a value range of [−1,1]. The closer 
the value is to 1, the higher the agreement between the 
classified image and the reference dataset (Congalton,  
2001). To get an idea of the performance of each class, 
PA and UA were calculated (Story & Congalton,  
1986). The PA measures the “errors of omission” or 
the probability of a class being correctly classified – in 
other words, how well the algorithm predicted every 
class. On the other hand, the UA measures the “errors 
of commission” or the probability that the classifica-
tion is what, in reality, is happening in the area stu-
died – in other words, how reliable it is (Congalton,  
2001; Story & Congalton, 1986).

Results

In the following section, we describe in detail the 
results and accuracy metrics for the various steps of 
the workflow. We found that small and heterogeneous 
urban residual waste can be identified in VHR aerial 
images using an RF classifier with high accuracy.

SLIC segmentation

For the sensitivity analysis of the SLIC segmentation, 
the higher the ns and c values, the higher the QR 
(0.017 to 0.354; see Supplementary material). 
Segmentations with<8,000 ns produced very big 
superpixels. For example, polygons with [2,000 ns, 
0.001c] and [4,000 ns, 0.001c] were huge and yielded 
lower QR values. These values are located in the upper 
left light region of the heatmap in (Figure 7). Since vast 
segments are not suitable for detecting garbage poly-
gons, they were excluded.

On the other hand, high compactness levels 
affected the shape of the produced segments. The 
estimation of the proportion of square polygons per 
scene showed that approximately 99% of the segments 
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with c ≥ 10 were mostly perfect rectangles. In this case, 
the shape and homogeneity information of every 
superpixel were lost. Moreover, the accuracy of the 
segmentations>12,000 ns and>10c was the same, 
which means the function reached a plateau after 
these values. These QR and shape values were primar-
ily found in the lower right diagonal of the heatmap 
(Figure 7). After discarding all non-suitable values, 
three values were selected (see Table 1). These three 
combinations of SLIC function parameters were used 
to segment the 25 AOIs for the analysis in this study 
(Figure 8).

The choice of the values of the SLIC segmentation 
parameters, ns, and c, influenced the classifications. In 

general, the segmentation 8,000 ns − 0.3c performed the 
best in terms of OA. The average OA of the segmentation 
8,000 ns − 0.3c was 80.18%, followed by 10,000 ns − 0.1c 
with an OA of 77.95%, and 12,000 ns − 0.1c with an OA 
of 75% (see detailed values in Table 2).

Building footprint

The accuracy of the resulting updated building foot-
print was evaluated using official cadastral building 
data, yielding 80% accuracy. Specifically, this building 
footprint had an accuracy of F1: 0.92, precision: 0.89, 
and recall: 0.94.

Figure 7. Heatmap of the sensitivity analysis showing the combination of the QR with the proportion of non-square polygons. The 
upper left corner represents segments with low QR and a high proportion of non-square polygons. The bottom right corner 
represents segments with high QR and a low proportion of non-square polygons. The optimum values are shaded in dark orange.
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Adding a building footprint increased OA on 
almost all treatment and segmentation combinations 
(Figure 9). This graph shows the difference in the OA 
minus with the building footprint. The OA is generally 

higher in the results where the classification is limited 
to areas outside building rooftops (from 71.53% to 
95.76%) (Table 2). Otherwise, OA was lower (from 
59.51% to 90.18%).

A closer look at every class shows that the F1 score 
tends towards being higher without the building foot-
prints, especially for “non-Garbage”, “Sure”, 
“Dispersed”, and “Not-Sure” (Figure 10). However, 
the class “Half-Sure” often performed better with the 
presence of rooftops (for treatments B and D).

When the buildings were removed, the algorithm 
located residual waste objects, mainly on the sidewalks 
where the garbage is usually dumped. Moreover, the 
classifier seldom identified residual waste objects in 
open areas, such as in the middle of streets, rivers, and 
vegetation. This confirms the plausibility of our clas-
sification results.

Identification of urban residual waste categories

The algorithm and combination of different factors 
evaluated in this study can separate the defined solid 
waste classes from the nG segments in the selected 
study areas. However, differentiating the diverse 
classes proved to be a more difficult task. The detec-
tion of urban waste was successfully achieved with the 
probability class “Sure”, and treatment A was followed 
by B. Treatment A had an OA ranging from 79.62% to 
95.76%, whereas the latter had an OA ranging from 
73.95% to 90.18%. On the other hand, the “non- 
Garbage” category scored the highest UA and PA in 
all treatments (>70%) (Figure 10). In other words, the 
absence of solid waste was the most accurate result 
obtained.

The models compares several combinations of the 
waste and non-solid waste classes. (Table 3) shows the 

Figure 8. Selected SLIC parameter values: (a) 10000 ns − 0.1c, 
(b) 8,000 ns − 0.3c, (c) 12000 ns − 0.1c. A digitised garbage 
object is delineated in yellow.

Figure 9. Barplot of the overall differential accuracy concern-
ing the presence or absence of a building footprint. The data 
show one bar per segmentation. Positive values mean that OA 
is higher after clipping out the rooftops. Negative values 
indicate that the OA was higher when the classification was 
performed with buildings included. Bars are grouped by treat-
ments, namely: A”:Sure” +”non-garbage”, B”:Sure” +”half- 
sure” +”non-garbage”, C”:Sure” +”dispersed” +”non- 
garbage”, D”:Sure” +”half-sure” +”not-Sure” +”non-garbage”, 
E”:Sure” +”half-sure” +”not-sure” +”dispersed” +”non- 
garbage”.

Figure 10. F1 score for all treatments [A–E] and segmentations 
(white/grey shades), with and without the building footprint. 
A”:Sure” +”non-garbage”, B”:Sure” +”half-sure” +”non- 
garbage”, C”:Sure” +”dispersed” +”non-garbage”, D”:Sure” 
+”half-sure” +”not-Sure” +”non-garbage”, E”:Sure” +”half- 
sure” +”not-sure” +”dispersed” +”non-garbage”.
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confusion matrix of the classification of the 25 AOIs 
using segments created with the SLIC parameters: 
8000ns and 0.3c. “Non-garbage” is the class best iden-
tified on the orthotiles with UA = 92.21% and PA =  
88.96%. In this example, the class “Sure” with UA =  
56.81%, is the second most reliable one. The model 
can identify and differentiate it from “Non-garbage” 
and “Dispersed”. Approximately 50.22% of the objects 
classified as “Dispersed” were correctly identified, but 
only 13% of the scattered solid waste piles found were 
actually “Dispersed”. “Not-sure” and “Dispersed” 
showed the lowest UA values, which indicates high 
commission errors, or segments wrongly classified. 
Finally, the classifier performs best, when all solid 
waste samples vs non-garbage are evaluated.

The classification results are influenced by the 
choice of methods and the properties of the data. 
Therefore, we explored the average spectral signa-
ture of each class. The “Half-sure” class exhibits, 
on average, the highest spectral reflectance values 
in all bands (Blue: 146.49 ± 35.55, Green: 160.36 ±  
32.65, Red: 161.48 ± 30.69, NIR: 108.98 ± 32.66). 
In addition, the reflectance distribution was easily 
differentiated from the signatures of all other 
classes. On the contrary, the average spectral sig-
nature of class “Sure” did not overlap with the nG 
classes only when the building footprint was 
masked. The average values of the classes 
“Dispersed” and “Not-Sure” were similar, overlap-
ping in the spectral signature. “Non-Garbage” ele-
ments have lower reflectance values in the 
training data without building footprints. In gen-
eral, the spectral signature that was best differen-
tiable from the nG datasets was from the class 

“Half-sure”, followed by “Sure” without the influ-
ence of the rooftops (Table 4). For more informa-
tion, see (Figure 1) of the supplementary content.

Discussion

In our experiments, we proved it was possible to locate 
residual waste on urban roads in high-resolution aerial 
imagery. This was possible with an accuracy of up to 
80–90% for class “Sure” when the rooftops were 
masked, although objects in the class “Half-Sure” 
were also detected with the entire scene.

Effects of segmentation on classification

The sum of QR and the rate of non-square poly-
gons shown in (Figure 8) combine the spectral and 
shape information in one index. The rate of non- 
square polygons allowed segmentations with high 
QR to be excluded, but with compactness so high 
that homogeneity no longer played a role. Since 
solid waste objects do not always have the same 
appearance and size, the selected values were opti-
mal for the segmentation process. The selected 
segmentations produced small, not square, seg-
ments, and fit into the training garbage areas. 
Many small segments combined had more chances 
to overlap with any possible garbage object, 
increasing the possibility of identifying any shape 
and size of the garbage area in an image.

The selected parameter values ns and c provide the 
best balance among all the variables defining the shape 
and size of superpixels that can detect garbage objects 
or parts of them. However, it is essential to highlight 

Table 3. Estimated error matrix of a classification with 8000ns and 0.3c for all garbage and non-garbage classes. Overall accuracy 
(OA), user accuracy (UA), and producer accuracy (PA) calculations are included. The upper part of the table shows a detailed 
information of every index per class. The lower part of the table shows a summarized information for all solid waste classes.

pred./ref. HS S D NS nG UA [%]

Half-sure HS 1291 387 237 618 384 44.26
Sure S 719 1564 0 470 0 56.81
Dispersed D 539 585 460 579 1325 13.19
Not-sure NS 908 1439 0 1308 1690 24.47
Non-garbage nG 523 493 219 1079 27388 92.21

PA [%] 32.44 35.00 50.22 32.26 88.96 OA = 72.42
Garbage HS, S, D, NS 3457 3975 697 2975 3399 76.56
Non-garbage nG 523 493 219 1079 27388 92.21

PA [%] 86.86 88.97 76.09 73.38 88.96 OA = 87.08

Table 4. Overall mean and standard deviation of the spectral signature (reflectance) of each classification category for all four 
bands. wB: nG dataset with buildings; woB: nG dataset without buildings.

Training category

Blue Green Red Near Infrarred

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Sure 84.59 26.22 100.67 24.65 105.95 22.76 56.76 21.52
Half-sure 146.49 35.55 160.36 32.65 161.48 30.69 108.98 32.66
Not-sure 113.2 44.31 126.11 41.4 129.85 38.65 79.75 37.44
Dispersed 116.55 30.01 124.7 26.19 118.86 24.71 91.68 25.34
Non-Garbage – with Building 82.71 39.43 97.62 34.29 99.78 33.62 60.02 29.37
Non-Garbage – without Building 71.01 36.91 89.16 31.88 91.33 31.28 55.56 29.19
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that these chosen values are specific to our data for 
several reasons: the size of each AOI raster (i.e. 0.25  
km2), the size, shape, and spectral properties of the 
objects to be found on the image, the spectral informa-
tion and resolution (i.e. bands red, green, blue, and 
near-infrared), and the pixel and ground sampling size 
(i.e. 8 cm pixel size), as well other factors that affected 
the scenes, such as differences in light intensity or 
quality, errors in the mosaicking, or shadows.

Nevertheless, by applying a sensitivity analysis 
using the SLIC algorithm, we developed 
a systematic and non-subjective method to over-
come these challenges and choose the correct 
values for the final segmentation. Here, we high-
light the importance of evaluating other parameter 
values like the second and third best instead of only 
the first. Since urban waste objects present high 
spectral variability, this approach increases the 
chances of detection.

Effects of the building footprint on classification

Training the model without the building footprint 
allowed for improving the classification for many 
reasons. First, after removing the buildings, we 
identified waste in the areas of our public spaces. 
Second, the remaining area has fewer land cover 
classes available. A visual inspection of the images 
without the building footprint indicated that 
streets, vegetation, bare soil, and water were pri-
marily present. Finally, the spectral information of 
the study areas with and without rooftops was very 
different (Table 4). The class “Sure” signature over-
lapped with “non-Garbage” when rooftops were 
included. This could be due to the colours of the 
rooftops, which resemble garbage elements. 
Therefore, removing the building footprint allowed 
better identification of the class “Sure”. The other 
solid waste class features have an average spectral 
signature higher than nG, making them easier to 
differentiate.

The fact that the accuracy of classes “Half-Sure”, 
“Not-Sure”, and “Dispersed” was not always improved 
when masking the rooftops could have different 
explanations:

(1) How the class was defined, or how the objects 
were assigned to this class.

(2) How the training data for these classes were 
created because these objects were not easily 
identified as solid waste as the class “Sure”.

(3) The spectral signatures of “Not-Sure” and 
“Dispersed” presented a high overlap. Another 
feature space could be considered in future ana-
lysis; for example, the inter-channel correlation 
could enhance the distinction between classes.

(4) The algorithm might perform better in identi-
fying single classes than mixtures of them. 
A future step would be to evaluate those classes 
independently (similar to Treatment A).

Identification of garbage and non-garbage areas

The model was successful at identifying what is not 
garbage, as well as the category “Sure”. Visually 
speaking, the class “Sure” was very homogenous 
because it was primarily composed of the same 
types of objects or plastic bags. Hence, objects 
containing diverse elements, not packed in the 
usual white – black plastic garbage bags, scored 
lower accuracy. The UA was mostly higher than 
the PA, indicating how many segments were iden-
tified as “Sure” waste that genuinely belonged to 
this category of garbage (Congalton, 2001). Other 
classes and treatments scored lower in UA and PA, 
which denoted how difficult it was to distinguish 
them from nG or other classes.

When classes such as “Dispersed” and “Not- 
sure” were included in the treatments, the accuracy 
dropped. These classes were the most difficult to 
detect and classify correctly. This could be due to 
the nature of the objects, i.e. the semantic informa-
tion used to label those elements on the streets as 
one class or the other. Removal of these classes can 
still identify the typical litter, clearly wrapped in 
bags, dumped along the streets or piled against an 
electricity pole.

The average reflectance of a band of these cate-
gories overlapped significantly in blue and green 
(Table 4). Including band combinations of blue and 
green could be a way to identify these classes. The fact 
that the algorithm performed worse when including 
these classes could be due to the identification of the 
elements that belonged to the class itself, to the algo-
rithm chosen, or to the variability of the spectral 
signature of that class. Difficulties distinguishing 
solid waste from bare soil have been previously 
reported. Yonezawa (2009) struggled to identify gar-
bage over the ground without vegetation using multi-
spectral Quickbird data.

During the creation of training data, garbage 
areas were sometimes challenging to distinguish 
from other objects on the scene, which were diffi-
cult to identify or assign to any class. Sometimes, 
it was clear that a specific object belonged to 
a residual waste category, but its appearance dif-
fered from other objects of the same class. At 
other times, objects on the scene looked similar 
to urban residual waste, for example, motorbikes, 
car windows, shadows, street drains, heads of 
pedestrians, or other types of garbage not pre-
viously identified. There might also be other 
solid waste categories found in the images that 
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we could not detect due to size or appearance. 
These features influence the assertiveness of the 
final classification, which can be seen in the 
images from (Figure 11). Most misclassifications 
happened on some of the objects mentioned 
above, identified as solid waste, and primarily 
located alongside the streets.

While there were designed centres for waste collec-
tion and recycling in the city, our selected AOIs did 
not overlap. Nevertheless, our model could also iden-
tify the garbage inside these locations. If they overlap, 
these locations could be excluded to generate an accu-
rate view of the illegal dumps. Besides the official 
centres, there are also authorised locations for solid 
waste accumulation, which our model can detect. This 
method can be used to validate illegal dumping zones 
if combined with ground truth data.

Challenges

Due to the spatial resolution of the orthotiles it is only 
possible to detect objects larger than the sampling size 
(64 cm2). This implies that the model cannot detect 
small solid waste elements thrown on the streets, such 
as plastic bottles or cigarette butts. However, when 
local media reports illegal dumping on the streets, 

this includes big plastic bags of domestic waste. 
Therefore, this model contributes to the detection of 
a significant component of littering in Medellín.

The temporal resolution of the images of one 
record per year provides a screenshot of the city. 
When we apply the waste detection model to these 
images, we briefly see the city’s condition, which 
might not represent a whole year. Therefore, it is 
impossible to quantify how much solid waste can be 
found on the streets of Medellín.

Another aspect of the temporal scale is comparing 
photos of other dates. The orthotiles are images 
recorded in 2019, while the Google Street View photos 
span from 2016 to 2021. Comparing the identified 
locations with Google Street View did not necessarily 
indicate that the dumping zones were permanent. 
However, if certain spots were visible on different 
time stamps, this might indicate that some illegal 
dumping occurred regularly, as the local media 
reported. Nevertheless, the model can detect solid 
waste, and if more images are available, more accurate 
temporal quantification could be possible.

The definition of the classes might have affected the 
capacity of the classifier to identify them. As pre-
viously mentioned, sometimes the waste objects 
looked similar to other elements in the scene. We 

Figure 11. Detailed view of some examples of the classification performance with the corresponding F1 score. The segments 
related to the class in the label are highlighted in yellow. Since some classifications involved more than one class, the segments of 
the other solid waste categories are shown in black. The examples are from the following combinations of treatments, building 
footprint, and segmentations: a) class”Sure”, treatment A, with building footprint, 8,000 ns − 0.3c, b) class”Sure”, treatment A, 
without building footprint, 10,000 ns − 0.1c, c) class”Half-sure”, treatment B, with building footprint, 8,000 ns − 0.3c, d) class”Half- 
Sure”, Treatment B, without building footprint, 8,000 ns − 0.3c, e) class”Dispersed”, treatment C, with building footprint, 8,000 ns − 
0.3c, f) class”Dispersed”, treatment C, without building footprint, 12,000 ns − 0.1c, g) class”Not-sure”, Treatment E, with building 
footprint, 10,000 ns − 0.1c, h) class”Not-sure”, treatment E, without building footprint, 10,000 ns − 0.1c.
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focused on garbage dumped in large plastic clusters 
because the average citizen discards all types of gar-
bage in one bag, regardless of which category it 
belongs (Peralta Miranda et al., 2019). Therefore, the 
classes were designed on the probability of being gar-
bage and not on its content.

Further research on this topic can benefit from 
many lessons learned, such as, focus on a garbage vs 
non-garbage classification, include multi-temporal 
information, or testing other AI algorithms. More 
training and adequate data are necessary for better 
classification performance. For example, Thung and 
Yang (2017) first built a dataset of images called 
TrashNet before training a model. The final algorithm 
helped identify and sort trash in a recycling process. 
More extensive and diverse training data on solid 
waste could also improve the detection of dumping 
zones.

Recently, more studies have been conducted in the 
SWM field using DL. As an artificial neural network 
method, it can handle unbalanced or incomplete data-
sets (Abdallah et al., 2020). This would be suitable for 
our case study, since most elements on a scene are not 
solid waste. This could contribute to excluding objects 
that can be confounded with garbage because of 
a similar appearance. DL methods can handle higher 
amounts of nonlinear, complex data faster. However, 
they are prone to overfitting and will not necessarily 
improve accuracy compared to decision tree models 
like the RF tested here (Abdallah et al., 2020).

Socioeconomic applications

The model proposed in this study contributes to iden-
tifying the areas in which SWM collection may be 
failing. The model demonstrates that it is possible to 
detect solid waste wrapped in bags and dumped in 
urban areas. Furthermore, comparing imagery at dif-
ferent times can show which areas are most affected by 
littering and how it changes over time. Machine learn-
ing approaches are not restricted to this phase. Several 
authors have also contributed to other phases, such as 
waste bin detection, collection routing optimisation, 
waste classification for recycling, model parameters of 
the composting process, and landfill location, among 
others (Xia et al., 2021).

The local municipality of Medellín reports recur-
rent disposal of solid waste at unauthorised sites next 
to a designated dumping site, or even right after the 
garbage was collected (El Tiempo, 2022). In other 
words, the problem is not only the garbage disposed 
of at unauthorised locations, but also that citizens 
dispose of it right after the regular municipal collec-
tion. Due to the impact of residual waste on health and 
quality of life (Medina, 2010), people need to dispose 
of their garbage, regardless of whether the local gov-
ernment has an efficient or effective residual waste 

management system. Using imagery from different 
times of the day, this model could also identify the 
zones where people dump their waste outside 
authorised times.

Classification of images for solid waste can be 
applied on aerial imagery, or camera surveillance 
(Ping et al., 2020). The local municipality of Medellín 
has recently implemented a machine called 
“Robocop”, which does visual recognition and image 
classification in real time of camera recordings of 
people who dumps their waste in unauthorized sites. 
The machine “speaks” with the citizen, and reports the 
information to the corresponding office. The results 
are that people feel discouraged to repeat their beha-
viour. A further step would be to couple this technol-
ogy with identified critical dumping zones from 
remotely sensed data.

Garbage collection efficiency might be related to 
the socioeconomic level of the district (Galvis 
Gonzalez, 2016). A visual inspection of the orthotiles 
used in this model shows that districts categorised as 
middle class or higher seldom have litter on the streets. 
The failure to provide an adequate residual waste 
management service could have many reasons: bud-
get, political will, illegal actions of residents, infra-
structure, and terrain, among others. Many slums are 
located in difficult-to-access areas: streets may be nar-
row or unpaved, or the location may be very steep, 
hilly, or far away from the disposal centre (Sliuzas & 
Kuffer, 2008).

Moreover, the residents usually pay the waste man-
agement costs via taxes, or in some cities like Bogotá, 
through the electricity bill (Medina, 2010). Since many 
slum dwellers do not pay taxes (Medina, 2010) or are 
not registered users in the electricity grid service, they 
do not contribute to this service, which aggravates 
their quality of life. Poor people are just poorer. The 
application of this model to the entire city of Medellín 
can also highlight socioeconomic and political pro-
blems. Whether the community is rich or poor, or if 
dumping is legal or illegal, the disposal of litter in 
public areas imposes a hygiene threat to all citizens 
(Du et al., 2021).

The implementation of this method requires the 
generation and processing of orthophotos. However, 
once automated, this process can be more economic-
ally efficient than humans patrolling the streets. With 
this approach, we hope to generate more knowledge 
about ineffective waste management and its solutions.

Conclusions

This study aimed to test a combination of methods 
with a conceptual definition of solid waste to detect 
residual urban waste in Medellín, Colombia. For this 
purpose, several possible combinations of residual 
waste, segmentation, and the presence or absence of 
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a building footprint were tested on orthorectified aer-
ial images of Medellín. The methodology for this study 
focused on statistical robustness, hence the systematic 
selection of segmentation parameters, the balanced 
number of samples, and the evaluation of many com-
binations of factors.

The research methods applied in this study can 
identify presence of solid waste. While it struggles 
to differentiate among the categories of garbage, 
especially “Dispersed” and “Not-sure”, it can 
detect with high accuracy where objects of 
“Sure” solid waste are disposed of on the streets. 
In general, the method proved capable of detect-
ing the random waste littered on the streets, ser-
ving as valuable information for decision-makers 
working to enhance SWM.

Accumulations of residual waste in the urban 
environment are a known public hygiene problem 
highly correlated with urban poverty (Medina,  
2010). Although this research did not explicitly 
detect the location of poverty, it contributed 
a method to determine areas in a city affected 
by a public health issue. Future research should 
further develop and confirm these initial findings 
to provide a proxy for urban poverty based on 
sanitation using remote sensing data.
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