Ulloa-Torrealba, Yrneh Zarit und Schmitt, Andreas und Wurm, Michael und Taubenböck, Hannes (2023) Litter on the streets - solid waste detection using VHR images. European Journal of Remote Sensing, 56 (1), Seiten 1-19. Taylor & Francis. doi: 10.1080/22797254.2023.2176006. ISSN 2279-7254.
PDF
- Verlagsversion (veröffentlichte Fassung)
19MB |
Offizielle URL: https://www.tandfonline.com/doi/full/10.1080/22797254.2023.2176006
Kurzfassung
Failures in urban areas’ solid waste management lead to clandestine garbage dumping and pollution. This affects sanitation and public human hygiene, deteriorates quality of life, and contributes to deprivation. This study aimed to test a combination of machine learning, highresolution earth observation and GIS data to detect diverse categories of residual waste on the streets, such as sacks and construction debris. We conceptualised five different classes of solid waste from image interpretation: “Sure”, “Half-sure”, “Not-sure”, “Dispersed”, and “Nongarbage”. We tested a combination of k-means-based segmentation and supervised random forest to investigate the capabilities of automatic classification of these waste classes. The model can detect the presence of solid waste on the streets and achieved an accuracy of up from 73.95%–95.76% for the class “Sure”. Moreover, a building extraction using an EfficientNet deep-learning-based semantic segmentation allowed masking the rooftops. This improved the accuracy of the classes “Sure” and “Non-garbage”. The systematic evaluation of all parameters considered in this model provides a robust and reliable method of solid waste detection for decision-makers. These results highlight areas where insufficient waste management affects the citizens of a given city.
elib-URL des Eintrags: | https://elib.dlr.de/196330/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Litter on the streets - solid waste detection using VHR images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 20 Februar 2023 | ||||||||||||||||||||
Erschienen in: | European Journal of Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 56 | ||||||||||||||||||||
DOI: | 10.1080/22797254.2023.2176006 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-19 | ||||||||||||||||||||
Verlag: | Taylor & Francis | ||||||||||||||||||||
ISSN: | 2279-7254 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Solid waste; sanitation; deprivation; remote sensing; machine learning; superpixels | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||
Hinterlegt von: | Taubenböck, Prof. Dr. Hannes | ||||||||||||||||||||
Hinterlegt am: | 18 Sep 2023 09:27 | ||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 14:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags