Gruner, Bernd and Sonnekalb, Tim and Heinze, Thomas S. and Brust, Clemens-Alexander (2023) Cross-Domain Evaluation of a Deep Learning-Based Type Inference System. In: Proceedings - 2023 IEEE/ACM 20th International Conference on Mining Software Repositories, MSR 2023, pp. 158-169. IEEE Computer Society. 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR), Melbourne, Australia. doi: 10.1109/MSR59073.2023.00034. ISBN 979-835031184-6. ISSN 2160-1852.
![]() |
PDF
309kB |
Official URL: https://www.computer.org/csdl/proceedings-article/msr/2023/118400a158/1OIL21ReQms
Item URL in elib: | https://elib.dlr.de/196196/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Cross-Domain Evaluation of a Deep Learning-Based Type Inference System | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||
Journal or Publication Title: | Proceedings - 2023 IEEE/ACM 20th International Conference on Mining Software Repositories, MSR 2023 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/MSR59073.2023.00034 | ||||||||||||||||||||
Page Range: | pp. 158-169 | ||||||||||||||||||||
Publisher: | IEEE Computer Society | ||||||||||||||||||||
Series Name: | 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR) | ||||||||||||||||||||
ISSN: | 2160-1852 | ||||||||||||||||||||
ISBN: | 979-835031184-6 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | type inference, dataset, cross-domain, python, long-tailed, out-of-vocabulary, repository mining, deep learning | ||||||||||||||||||||
Event Title: | 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR) | ||||||||||||||||||||
Event Location: | Melbourne, Australia | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Intelligent analysis and methods for safe software development | ||||||||||||||||||||
Location: | Jena | ||||||||||||||||||||
Institutes and Institutions: | Institute of Data Science Institute of Data Science > Data Acquisition and Mobilisation | ||||||||||||||||||||
Deposited By: | Gruner, Bernd | ||||||||||||||||||||
Deposited On: | 31 Jul 2023 14:37 | ||||||||||||||||||||
Last Modified: | 05 Sep 2023 09:05 |
Repository Staff Only: item control page