elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Physics-based Regularization of Neural Networks for Aerodynamic Flow Prediction

Hines Chaves, Derrick Armando und Dias Ribeiro, Mateus und Bekemeyer, Philipp (2023) Physics-based Regularization of Neural Networks for Aerodynamic Flow Prediction. In: EUROGEN 2023 15th ECCOMAS Thematic Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control, Seiten 22-39. Eurogen 2023 15th ECCOMAS Thematic Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control, 2023-06-01 - 2023-06-03, Kreta, Griechenland. doi: 10.7712/140123.10188.18859.

[img] PDF
744kB

Offizielle URL: https://www.eccomasproceedia.org/conferences/thematic-conferences/eurogen-2023/10188

Kurzfassung

Aerodynamic data plays a central role in the process of aircraft design, optimization and certification. For these processes a vast amount of data is required for various flight conditions throughout the flight envelope. Currently this data is commonly produced using Computational Fluid Dynamics (CFD). However, such simulations based on the Reynolds-averaged Navier-Stokes equations are computationally expensive and become prohibitive for tasks such as load analysis and shape optimization. During the last decades, this has motivated research focusing on the use of data-driven models with lower evaluation times than the full-order model to replace high-fidelity CFD simulations. More recently, deep learning approaches have gathered significant interest in the aerodynamic community. For the task of predicting surface pressure coefficient distributions, one of the proposed models consists of a multilayer perceptron that for each node in the mesh outputs a prediction of the local coefficient based on the node coordinates and the global operational conditions. If required, known integration formulas are used to compute integral quantities, such as the lift and pitching moment coefficients, based on the previously obtained distribution. In this paper we The method is tested for the NASA Common Research Model transport aircraft with an underlying mesh consisting of around 500,000 surface points. Results show that, when using the mentioned approach for the fine-tuning of a trained multilayer perceptron, physical knowledge can be explicitly revealed to the deep learning model but only limited improvements are achieved in the predictions of the lift and pitching moment coefficients.

elib-URL des Eintrags:https://elib.dlr.de/196045/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Physics-based Regularization of Neural Networks for Aerodynamic Flow Prediction
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hines Chaves, Derrick ArmandoDerrick.HinesChaves (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dias Ribeiro, Mateusmateus.diasribeiro (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bekemeyer, PhilippPhilipp.Bekemeyer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2023
Erschienen in:EUROGEN 2023 15th ECCOMAS Thematic Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.7712/140123.10188.18859
Seitenbereich:Seiten 22-39
Status:veröffentlicht
Stichwörter:Deep Learning, Neural Network, Regularization, Aerodynamic
Veranstaltungstitel:Eurogen 2023 15th ECCOMAS Thematic Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control
Veranstaltungsort:Kreta, Griechenland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:1 Juni 2023
Veranstaltungsende:3 Juni 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: Hines Chaves, Derrick Armando
Hinterlegt am:29 Nov 2023 11:10
Letzte Änderung:24 Apr 2024 20:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.