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Abstract. Aerodynamic data plays a central role in the process of aircraft design, optimization
and certification. For these processes a vast amount of data is required for various flight con-
ditions throughout the flight envelope. Currently this data is commonly produced using Com-
putational Fluid Dynamics (CFD). However, such simulations based on the Reynolds-averaged
Navier-Stokes equations are computationally expensive and become prohibitive for tasks such
as load analysis and shape optimization. During the last decades, this has motivated research
focusing on the use of data-driven models with lower evaluation times than the full-order model
to replace high-fidelity CFD simulations. More recently, deep learning approaches have gath-
ered significant interest in the aerodynamic community. For the task of predicting surface pres-
sure coefficient distributions, one of the proposed models consists of a multilayer perceptron
that for each node in the mesh outputs a prediction of the local coefficient based on the node
coordinates and the global operational conditions. If required, known integration formulas are
used to compute integral quantities, such as the lift and pitching moment coefficients, based on
the previously obtained distribution. In this paper we train a multilayer perceptron that predicts
pressure coefficient distributions and uses known integration formulas to compute predictions of
global coefficients, both during training and inference. We examine the effect that is achieved in
the prediction of global coefficients with the use of a physics-based regularization term that dur-
ing training penalizes the multilayer perceptron if the predicted global coefficients deviate from
the reference values. The method is tested for the NASA Common Research Model transport
aircraft with an underlying mesh consisting of around 500, 000 surface points. Results show
that, when using the mentioned approach for the fine-tuning of a trained multilayer percep-
tron, physical knowledge can be explicitly revealed to the deep learning model but only limited
improvements are achieved in the predictions of the lift and pitching moment coefficients.
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1 INTRODUCTION

During aircraft design and optimization accurate flow field predictions are required for var-
ious operational conditions over the flight envelope in order to analyze aerodynamic perfor-
mance, structural loads and handling qualities. Computational fluid dynamics (CFD) simula-
tions are typically used to produce high-fidelity data. However, each simulation has a very high
computational cost making it infeasible to use high-fidelity Reynolds-averaged Navier-Stokes
(RANS) solvers to produce all the required data during industrial development cycles. For this
reason, fast surrogate models for the accurate prediction of flow fields and integral quantities
are of great interest. Data-driven models have gained an increasing attention in recent years.
Within this class, proper orthogonal decomposition (POD) [1] as a dimensionality reduction
technique combined with an interpolation method such as radial basis functions or Gaussian
Processes is arguably the most common method. Application examples for aerodynamics are
widespread and can be found in [2, 3, 4, 5, 6]. These models are reported to be easy to con-
struct and highly accurate as long as only linear behaviour is present. However, in transonic
flows, in the presence of shocks, the accuracy of such models reduces significantly. Therefore,
alternative methods are sought after.

Deep learning (DL) models have attracted attention in recent research due to their success
at the extraction and representation of hierarchical data features [7]. Publications are avail-
able for the prediction of aerodynamic coefficients for airfoils, including integral quantities
(lift and drag) [8], fields (surface pressure distribution) [9] as well as unsteady forces [10, 11].
In [12] convolutional neural networks are introduced to predict the velocity field in non-uniform
steady laminar flows, while several extensions are available in [13, 14, 15, 16]. An extension
towards industrial relevant 3D cases featuring transonic flows including shocks and boundary
layer separation relying on a multilayer perceptron used for the pointwise prediction of pres-
sure coefficients has been studied in [17, 18]. In recent work the model was extended to include
the surface normals as additional input achieving further improved results [19]. For the predic-
tion of integral coefficients, such as the lift and pitching moment coefficients, well-established
physical equations were used to compute them based on the obtained surface pressure coeffi-
cient distribution. However, in this approach prior knowledge about the physical system, such
as the relationship between the pressure distribution and the lift coefficient, was available but
unused during the training of the network. An often pursued alternative is to construct separate
models for distributed and global quantities of interest which can easily lead to differing trends
when using both models together.

In this paper we train a multilayer perceptron that predicts pressure coefficient distributions
and uses known integration formulas to compute predictions of global coefficients, both dur-
ing training and inference. We examine the effect that is achieved in the prediction of global
coefficients with the use of a physics-based regularization term [20] that during training penal-
izes the multilayer perceptron if the predicted global coefficients deviate from the ground truth.
The studied methodology is applied for an industrial relevant 3D case known as the NASA
Common Research Model (NASA CRM) transport aircraft. It is compared to the same model
without the physics-regularization term and to the aforementioned proper orthogonal decompo-
sition coupled with interpolation. We refer to these three methods as indirect methods because
they predict the surface pressure coefficient distribution and then as a second step calculate the
desired global coefficient. As mentioned before, a direct prediction of the global coefficients is
also possible and several methods have been proposed [21, 22]. Two of these approaches are
radial basis function interpolation (RBF) and a multilayer perceptron for global predictions. To
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provide a more comprehensive analysis, the performance of the indirect methods is compared
to the one of these direct methods. We highlight that the indirect methods have the added ben-
efit that they yield a consistent model in which the predicted integral quantities agree with the
distributed quantities. Such models can be used well beyond the prediction of a global quantity
during the multidisciplinary process of aircraft design.

This paper is organized as follows. Section 2 presents the methodology used to obtain the
ground global truth global coefficients and then describes the surrogates models. Next, Section 3
outlines further details of the test case and subsequently Section 4 discusses the results. The
conclusion is found in Section 5 and additional information are given in the Appendix 7.

2 METHODOLOGY

The three-dimensional Navier-Stokes equations in conservative form are given on a control
volume Ω and its closed surface ∂Ω by

∂

∂t

∫
Ω

W⃗dΩ +

∮
∂Ω

(F⃗c − F⃗v) dS = 0 (1)

The conservative variables are expressed by W⃗ = (ρ, ρu, ρv, ρw, ρE)⊤, where ρ is density,
u, v, w the velocity components in the spatial directions and E the total energy. F⃗c and F⃗v

are the vectors of convective and viscous fluxes, respectively. The steady state is achieved
if for all control volumes the time derivative vanishes, or equivalently if the fluxes become
zero. Employing a finite volume scheme a steady-state solution is found, yielding a pressure
distribution at the surface of the aircraft Γ formed by n faces Γi. The pressure pi is hence
obtained at each face Γi. The pressure coefficient cp,i is a non-dimensional quantity computed
as

cp,i =
pi − p∞

q∞
(2)

where p∞ and q∞ are the static pressure and dynamic pressure of the incoming flow, respec-
tively. The obtained c⃗p distribution at the surface of the aircraft is then used to obtain global
aerodynamic force and moment coefficients.

In this work we investigate the prediction of lift coefficient CL and pitching moment coeffi-
cient Cmy and omit the viscous force components during their calculation since the considered
models do not predict the skin friction coefficients. We consider the aircraft flying in a symmet-
ric flight at a given Mach number under an angle of attack α and use a body-fixed coordinate
system, shown in Figure 1a, with axial, transversal and normal directions denoted by the unit
vectors x̂, ŷ, ẑ respectively. The pressure force F⃗p,i at the face Γi is obtained as

F⃗p,i = −cp,i n⃗i (3)

where n⃗i = (ni,x, ni,y, ni,z)
⊤ = ∆sin̂i is the face normal vector, which is the outward unit

normal vector multiplied by the area of the face. The pressure forces are summed up to get a
total pressure force F⃗p over the aircraft surface as

F⃗p =
n∑

i=1

F⃗p,i (4)
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Considering a reference area SΓ, the coefficients CA and CN are calculated as

CA =
F⃗p · x̂
SΓ

, CN =
F⃗p · ẑ
SΓ

(5)

representing normalized versions of the axial and normal components of the total pressure force.
The lift coefficient CL in the aerodynamic coordinate system, which is a clockwise rotation of
α about the transversal axis as shown in Figure 1b, is calculated as

CL = −CA sinα + CN cosα (6)

yielding a normalization of lift. Overall, in this discrete physical model the lift coefficient is
obtained as a linear transformation of the pressure coefficient distribution c⃗p, dependent on the
angle of attack α and the aircraft surface geometry G.

CL = TCL
(c⃗p;α,G) =

n∑
i=1

(
ni,x sinα− ni,z cosα

SΓ

)
cp,i =: a⃗CL

· c⃗p (7)

Regarding the calculation of Cmy, the contribution of the face Γi to the moment coefficient with
respect to a reference point is obtained as

M⃗i = R⃗i × F⃗p,i (8)

where R⃗i = (∆xi,∆yi,∆zi)
⊤ is the displacement vector of the integration point in the face

Γi from the reference point. The pitching moment coefficient Cmy is given by the sum of the
y-components of M⃗i, divided by the product of a reference chord length Lchord and a reference
area SΓ:

Cmy =

n∑
i=1

M⃗i,y

Lchord SΓ

(9)

This model then gives the pitching moment coefficient as a linear transformation of the pressure
coefficient distribution as

Cmy = TCmy(c⃗p;α,G) =
n∑

i=1

(
∆xi ni,z −∆zi ni,x

Lpitch SΓ

)
cp,i =: a⃗Cmy · c⃗p (10)

(a) Body-fixed coordinate system and aircraft sur-
face Γ

D

Y

L

X

Z

α

α

(b) Aerodynamic coordinate system

Figure 1: Body-fixed and aerodynamic coordinate systems
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The goal of the methods in this paper is the prediction of a global coefficient C, either
CL or Cmy from operational conditions given by the Mach number, angle of attack, inboard
aileron deflection angle, outboard aileron deflection angle, elevator deflection angle and hori-
zontal tailplane deflection angle that we denote as x⃗ = (M,α, ϕinAil, ϕoutAil, ϕel, ϕhtp)

⊤. The
global coefficient is considered as a function of the operational conditions:

C = f(x⃗) (11)

We distinguish between two classes of surrogate methods for the estimation of global coef-
ficients: direct and indirect methods. Direct methods directly estimate global coefficients from
given operational conditions without considering the surface pressure distribution and the inte-
gration formulas. One of these methods is radial basis function interpolation (RBF) that obtains
the prediction as

C(x⃗) =
∑
k

wkφ(||x⃗− x⃗k||) (12)

where wk are learnable weights, φ is a radial function and x⃗k the operational conditions for
the k-th sample in the training data. In this paper we allow the augmentation of the previous
formulation with polynomials and also consider under this umbrella term Gaussian Process
(GP) interpolation with fixed and variable exponents [23]. Another direct method is a multilayer
perceptron for global predictions (MLPG) that calculates the global coefficient as

C(x⃗) = MLPG(x⃗) = WK

(
· · ·

(
W2ϕ(W1x⃗+ b⃗1) + b⃗2

)
· · ·

)
+ b⃗K (13)

where Wk and b⃗k are learnable weights and biases.
In contrast, indirect methods predict the surface pressure distribution and then use the phys-

ical equations to calculate the global coefficient. These methods have the benefit that they yield
a consistent model that guarantees that the predicted surface pressure coefficient distributions
are in agreement with the predicted global coefficient. They are aware of the integration for-
mulas 7 and 10 that establish how the global coefficients are obtained from the surface pressure
distribution, the operational conditions and the aircraft geometry. The prediction is hence done
in two steps:

y⃗ = fθ(x⃗) (14)
C = TC(y⃗) (15)

where y⃗ is the predicted distribution and θ represents learnable parameters. Proper orthogonal
decomposition coupled with interpolation (PODI) is arguably the most common data-driven
method used. Modes Φ ∈ Rn,d and lower dimensional representations Z ∈ Rd,m are computed
so that Φz⃗i ≈ y⃗i, where d is the lower dimension, and m the number of training samples. The
prediction for new parameters x⃗ is calculated as

y⃗(x⃗) = Φz⃗(x⃗) (16)
C = TC(y⃗(x⃗)) (17)

where z⃗(x⃗) are POD coefficients obtained using an interpolation technique. We refer to the
resulting model as PODI. The interest reader is referred to [24, 17, 18] for a more detailed de-
scription of this model. This work focuses on two other indirect methods, based on a multilayer
perceptron, that are described next.
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2.1 MULTILAYER PERCEPTRON FOR LOCAL PREDICTIONS

Following the work in [17, 19], in this approach the operational parameters, and the mesh
coordinates and face normals are used to perform pointwise predictions of the pressure coeffi-
cients using a multilayer perceptron for local predictions (MLPL). The prediction of the surface
pressure distribution for the parameters x⃗ is calculated as

y⃗(x⃗) =
[
MLPL(x⃗⊕ c⃗1 ⊕ ν⃗1), . . . ,MLPL(x⃗⊕ c⃗n ⊕ ν⃗n)

]⊤ (18)

where c⃗i and ν⃗i represent in the undeformed mesh the body-fixed coordinates of node i and the
unit normal of the corresponding face, respectively. The loss function is given by

Llocal = MSE(y⃗(x⃗), y⃗true(x⃗)) =

n∑
i=1

(y⃗(x⃗)i − y⃗true(x⃗)i)
2

n
(19)

After training the model, the predictions of the surface pressure distributions are used to predict
the global coefficient as

C = TC(y⃗(x⃗)) (20)

2.2 MULTILAYER PERCEPTRON WITH GLOBAL COEFFICIENT REGULARIZA-
TION

The previous model is an indirect method in which the integration formulas 7 and 10 are
only used as a post-processing step of the predicted distribution. However, during training it
disregards them, so that the model remains uniformed about the underlying physical relation
between the local pressure coefficients and the global coefficient. That results in a model that
is not directly optimized for the prediction of the desired global coefficient, so that certain de-
viations could arise. For example, if it occurs that the prediction error vector of the distribution
∆y⃗(x⃗) := y⃗(x⃗)− y⃗true(x⃗) has a high correlation with the integration coefficients a⃗C even small
individual errors in the predicted distribution can sum up to a larger error |∆C(x⃗)| in the global
coefficient. By way of illustration, at an angle of attack equal to zero and without surface de-
flections, if all surface pressure predictions at the top of the wing are higher while at the bottom
they are lower than the ground truth values, then the predicted lift coefficient can become much
lower than the actual one. This situation seems unlikely, nonetheless, the network can still de-
velop some error biases and the incorporation of the integration formulas during training can
help the model to adapt and become more accurate at the estimation of the global coefficient.

In this work we train MLPL as usual and then during the final epochs fine-tune it for the task
of global coefficient prediction, by modifying the loss function to include an additional penalty
for the deviation of the predicted global coefficients from the ground truth. As proposed in
recent work [20], a global loss function and a penalty parameter are introduced. The global loss
is multiplied by the penalty parameter and then added to the local loss to form the total loss
function as expressed by

Lglobal = MSE(C(x⃗), Ctrue(x⃗)) = (C(x⃗)− Ctrue(x⃗))
2 (21)

Ltotal = Llocal + λglobalLglobal (22)

We refer to the model obtained in this way as MLPPR, standing for multilayer perceptron
with physics regularization. A summary of the direct and indirect surrogate methods is provided
in Table 1.

27



Derrick Hines Chaves∗, Mateus Dias Ribeiro, and Philipp Bekemeyer

Class RBF MLPG PODI MLPL MLPPR
Direct ✓ ✓

Indirect ✓ ✓ ✓
Physics-aware training ✓

Table 1: Surrogate methods

3 TEST CASE

The test case is the NASA Common Research Model (NASA CRM), an industrial-relevant
configuration resembling a modern commercial transport aircraft. High-fidelity RANS-CFD
simulations were carried out with the DLR flow solver TAU [25], using the Spalart-Allmaras tur-
bulence model. The DLR Surrogate Modeling for AeRo data Toolbox in python (SMARTy) [26]
was used for the computation of the global coefficients and the construction of the surrogate
models. The computational grid modeling the configuration without a vertical tailplane com-
prises approximately 43 million points and the corresponding surface grid, shown in Figure 2,
consists of n = 454, 404 surface points. The grid was derived based on DLR’s experience dur-
ing the AIAA Drag Prediction Workshop [27, 28] and is a slightly improved version of the fine
grid used in [28]. Hence, results are comparable in accuracy when solving the RANS equations
coupled with the Spalart–Allmaras turbulence model. The underlying coupled fluid–structure

Figure 2: Pairplot of sampling strategy and computational mesh for the NASA CRM
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simulation used to obtain the deformed 1g flight shape was compared to results from a European
transonic wind-tunnel test campaign in [29]. A static deformation test was not part of the mea-
surement campaign done for the AIAA Drag Prediction Workshop, and no direct experimental
results are available. Note that, the flight shape is kept fixed in this paper. For further details,
such as mesh convergence studies, turbulence model influence and comparison to experimental
results as well as other codes, the interested reader is referred to the corresponding literature.

All CFD simulations were ran until a residual below e−8 was reached. In addition to the
density residual criterion, a Cauchy convergence criteria was employed for the lift and pitch-
ing coefficient with values of e−3 and 5e−5, respectively, to accelerate convergence. The
altitude was set to 37, 000 ft and the samples were parameterized by six independent parame-
ters: Mach number, angle of attack, inboard aileron deflection angle, outboard aileron deflec-
tion angle, elevator deflection angle and horizontal tailplane deflection angle that we denote
as M,α, ϕinAil, ϕoutAil, ϕel, ϕhtp, respectively. A Halton sequence was used to produce 157 six-
dimensional operational conditions, of which m = 149 were retained after running the CFD
simulations. Out of the m = 149 total samples, the first 75 are selected for training, the next 30
are selected for validation, while the remaining 44 samples are used for testing. This partition-
ing of the data is shown in Figure 2.

4 RESULTS

This section presents the results for the task of predicting global coefficients for various op-
erational conditions. Different models are built for the lift coefficient CL than for the pitching
moment coefficient Cmy, and the results are presented separately. In order to simulate a pro-
duction environment and evaluate the generalization capabilities of the models, the results are
based on the testing samples, which were not seen by the models during training and validation.
The metrics used to evaluate the performance of the models with respect to the test samples are
the mean absolute error (MAE), the median of the absolute error (MedianAE) and the maxi-
mum absolute eror (MaxAE). Additionally, for the sake of analyzing lift and pitching moment
curves, for each of the Mach numbers 0.54, 0.70, and 0.85, eight samples without control sur-
face deflections were computed with angles of attack ranging from −2◦ to 5◦.

In the case of the direct methods, a grid search approach was used to optimize the hyper-
parameters of RBF and MLPG. Tables 7 and 8 in the appendix display the optimal hyperpa-
rameters for these models. Using the selected hyperparameters, experiments for MLPG were
repeated 10 times to account for the randomness of the training procedure and results display
the obtained mean test metrics together with the standard deviation.

Regarding the indirect methods, the hyperparameters were selected as follows. For PODI,
the hyperparameters are the same as those that were obtained in [19] for the prediction of
the surface pressure distributions. The selected hyperparameters are shown in the appendix in
Table 9. In the case of MLPL, the architecture of the model was chosen based on the previous
best hyperparameters found in [19]. The batch size was changed to allow the training of one full
snapshot simultaneously, so that the model processes 454, 404 points per batch. The learning
rate, its decay factor and the number of epochs were changed accordingly to find a reasonable
model. Table 10 shows the hyperparameters for this model.

For the MLPPR, the models start with the model state of MLPL and attempt to fine-tune
the model for some additional epochs with the inclusion of the global loss. The model named
MLPLC, standing for MLPL continued, refers to the model that is trained in an equal fashion
as MLPPR but without the global loss. This is done in order to more fairly assess the benefit
of the inclusion of the global loss penalty term, as the additional benefit could also stem alone
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from training for more epochs. The optimal hyperparameters obtained using the framework
Optuna [30] for MLPPR are shown in Table 11. As in the case of MLPG, experiments for
MLPPR and MLPC were repeated 10 times.

4.1 LIFT COEFFICIENT

Table 2 shows the obtained metrics for all models, while Figure 3 displays the cumulative
distribution of the absolute error. In order to show a more detailed view of the distribution, the
results for MLPG, the worst performing model, are omitted in the plot. MLPL attains a MAE
of 3.0 × 10−3, while the MLPPR yields a MAE of 2.7 × 10−3, representing a 10% decrease
in this error metric. Meanwhile, MLPC, trained exactly as MLPPR but without the global
loss term, obtains a MAE of 3.1 × 10−3 showing no improvement with respect to base model
MLPL. The other models RBF, MLPG and PODI attain mean absolute errors of 6.1 × 10−3,
13.3 × 10−3, and 9.1 × 10−3, representing an increase in this error metric of 103%, 343% and
203%. In all three error metrics MLPPR outperforms the other models, although the median
of the absolute error remains unchanged with respect to MLPL. It can also be observed in
the cumulative distribution of the absolute error how MLPL and MLPPR outperform the other
models across almost all quantiles. Between MLPL and MLPPR the differences are much
smaller and only minor improvements of MLPPR are present.

Regarding the prediction of the pressure coefficient distributions, MLPL achieves a mean
absolute error of 12.3 × 10−3, while on average MLPPR attains in this error metric a value of
12.4 × 10−3. In comparison, PODI achieves a MAE of 19.8 × 10−3, representing an increase
of 61% with respect to MLPL. Hence, the MLPRR model is able to improve the lift coefficient
prediction slightly compared to the MLPL model without negatively impacting the pressure
distribution prediction.

Figure 4 shows the lift coefficient curves for the three selected Mach numbers for cases

Table 2: CL test metrics

Metric RBF MLPG PODI MLPL MLPPR MLPC
MAE ×103 6.1 13.3± 1.0 9.1 3.0 2.7± 0.1 3.1± 0.0

MedianAE ×103 3.4 7.3± 1.0 4.9 1.5 1.5± 0.1 1.6± 0.0
MaxAE ×103 30.1 83.6± 4.8 40.1 20.6 19.2± 0.3 21.1± 0.1

Figure 3: CL absolute error cumulative distribution
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Table 3: CL mean absolute error ×103

Mach RBF MLPG PODI MLPL MLPPR
0.54 2.0 4.9 4.5 1.1 1.0
0.70 2.7 6.7 3.7 1.7 1.5
0.85 10.1 17.7 19.3 6.4 6.2

without control surface deflections. Table 3 shows for each Mach number the mean absolute
errors over the eight angles of attack. In Figure 4a the Mach number corresponds to 0.54. All
methods give accurate predictions and their mean absolute error is below 5 × 10−3. MLPPR
achieves the lowest MAE with a value of 1.0 × 10−3, while MLPG attains the highest, 4.9 ×
10−3. MLPG is observed to underpredict at an angle of attack of 5◦, with an absolute error of
20.1× 10−3. In comparison, RBF obtains the lowest absolute error, 3.2× 10−3. At an angle of
attack of −1◦, shown in Figure 4d, PODI obtains the highest absolute error, 8.6 × 10−3, while
MLPPR obtains the lowest, 0.2× 10−3.

Figure 4b features a Mach number equal to 0.70, at the center of the sample space for this
variable. For all methods, except PODI, the mean absolute error is greater than in the previous
case. Again, MLPPR attains the lowest, 1.5 × 10−3, and MLPG, the highest, 6.7 × 10−3. As
observed, MLPG overpredicts at an angle of 4◦, obtaining an absolute error of 18.5 × 10−3,
while MLPPR achieves the lowest error, 0.2 × 10−3. At an angle of attack of 1◦, as shown in
Figure 4e, MLPG deviates the most, with an absolute error of 4.7 × 10−3, while MLPL is the
closest to the ground truth value and attains an error of 0.2 × 10−3. From a physical point of
view, however, these differences are negligible since all model predictions except the MLPG
provide accurate results which should suffice for nearly all follow on activities.

Figure 4c shows the lift curve for a Mach number equal to 0.85. For this Mach number, the
mean absolute error is the highest for all models. MLPPR still attains the lowest mean absolute
error, 6.2 × 10−3, while PODI attains the highest, 19.3 × 10−3. The predictions at an angle
of attack of 3◦ differ significantly from the reference solution. At this angle of attack, PODI
yields the highest absolute error, 46.7× 10−3, while MLPPR attains the lowest, 18.1× 10−3. It
is also observed that MLPG deviates significantly for higher angles. At an angle of 5◦, shown
in Figure 4f, MLPG deviates the most, with an absolute error of 35.7 × 10−3. In comparison,
MLPPR, attains the lowest error, 1.9 × 10−3. In contrast to both previous cases, at this Mach
number the MLPRR model has a benefit from a physical perspective as it indicates the lift
decrease due to occurring separation on the upper wing surface and provides a more robust
CL,max prediction.

4.2 PITCHING MOMENT COEFFICIENT

Table 4 shows the obtained metrics for all models, while Figure 5 displays the cumulative
distribution of the absolute error. Again the results for MLPG, the worst performing model, are
omitted in the plot. The MLPL attains a MAE of 44.5× 10−4, while the MLPPR yields a MAE
of 43.6 × 10−4, representing a 2% decrease in this error metric. Meanwhile, MLPC, trained
exactly as MLPPR but without the global loss term, obtains a MAE of 44.8 × 10−4 showing
no improvement with respect to the MLPL base model. The other models RBF, MLPG and
PODI attain mean absolute errors of 46.1× 10−4, 102.6× 10−4, and 55.6× 10−4, representing
an increase in this error metric of 4%, 131% and 25%. MLPPR outperforms all other models

31



Derrick Hines Chaves∗, Mateus Dias Ribeiro, and Philipp Bekemeyer

with respect to the mean absolute error, while MLPLC attains the lowest median absolute error
and RBF the lowest maximum absolute error. However, it can be observed in the cumulative
distribution of the absolute error that MLPL and MLPPR outperform RBF in most quantiles.

Figure 6 shows the pitching moment coefficient curves for the selected Mach numbers. Ta-
ble 5 shows for each Mach number the mean absolute error over the eight angles of attack. In
Figure 6a the Mach number corresponds to 0.54. MLPL achieves the lowest mean absolute

(a) M = 0.54 (b) M = 0.70 (c) M = 0.85

(d) M = 0.54, α = −1◦ (e) M = 0.70, α = 1◦ (f) M = 0.85, α = 5◦

Figure 4: Comparison of the predicted lift coefficients to the CFD reference samples without
control surface deflections

Table 4: Cmy test metrics

Metric RBF MLPG PODI MLPL MLPPR MLPLC
MAE ×104 46.1 102.6± 8.7 55.6 44.5 43.6± 0.0 44.8± 0.0

MedianAE ×104 33.7 59.6± 10.9 35.9 23.7 25.0± 0.1 23.6± 0.0
MaxAE ×104 163.7 683.9± 112.4 465.1 301.7 297.3± 0.3 301.5± 0.1
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error, 8.9 × 10−4, while MLPG yields the highest, 39.2 × 10−4. MLPG is observed to deviate
significantly at various angles of attack. It is also noticeable that RBF overpredicts at an angle
of 5◦, attaining an absolute error of 147.1× 10−4. In comparsion, MLPPR achieves the lowest
error, 7.6 × 10−4. At an angle of attack of 3◦, as shown in Figure 6d, MLPG has the highest
absolute error of 43.0× 10−4, while MLPL has the lowest, 3.5× 10−4. At an angle of attack of
−2◦, as shown in Figure 6e, MLPG presents the highest error, 49.8×10−4, while MLPL attains
the lowest error, 1.2× 10−4.

Figure 6b features a Mach number equal to 0.70. For all methods, except MLPG, the mean
absolute error is greater than in the previous case. PODI achieves the lowest mean absolute
error, 21.6× 10−4, while MLPG attains the highest, 31.7× 10−4. At an angle of attack of 5◦ the
models show higher deviations from the ground truth value. PODI presents the highest absolute
error, 104.1 × 10−4, while MLPG the lowest, 38.4 × 10−4. Throughout all models except the
MLPG at some specific angles of attack yield reasonable results for following aerodynamic and
fight mechanic analysis with correct trends as well as accurate enough moment estimates.

Figure 6c shows the pitching moment curve for a Mach number equal to 0.85. As in the
case of lift, this Mach number proves to be the most challenging and the mean absolute error
is the highest for all models. This directly results from the underlying physics with shock
induces separation and reverse shock motion especially at high angles of attack. MLPR achieves
the lowest mean absolute error, 67.7 × 10−4, while MLPG attains the highest, 150.0 × 10−4.
The predictions at an angle of attack of 3◦ differ significantly from the reference solution, as
the pitching moment starts deviating from the linear trend due to an underlying inverse shock
motion. At this angle of attack, PODI yields the highest absolute error, 303.5 × 10−4, while
MLPL attains the lowest, 185.7 × 10−4. For higher angles of attack, significant deviations can
also be observed for RBF, MLPG and PODI. At an angle of 4◦, shown in Figure 6f, RBF has the
higest error, 118.0× 10−4, while MLGP attains the lowest, 12.3× 10−4. For an angle of 5◦ the

Figure 5: Cmy absolute error cumulative distribution

Table 5: Cmy mean absolute error ×104

Mach RBF MLPG PODI MLPL MLPPR
0.54 34.7 39.2 14.9 8.9 10.1
0.70 22.2 31.7 21.6 24.9 25.7
0.85 99.7 150.0 118.1 67.9 67.7
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(a) M = 0.54 (b) M = 0.70 (c) M = 0.85

(d) M = 0.54, α = 3◦ (e) M = 0.70, α = −2◦ (f) M = 0.85, α = 4◦

Figure 6: Comparison of the predicted pitching moment coefficients to the CFD reference sam-
ples without control surface deflections

indirect deep learning models are the only ones able to capture the reversing trend in pitching
moment increase.

4.3 Computational Cost

For practical applications it is not only important that the data-driven models provide accu-
rate predictions of aerodynamic quantities, but also that they do so in significantly less time
than the time-consuming high fidelity CFD computations. Therefore, we provide an overview
in Table 6 of the training and evaluation times of the models to help assess the feasibility of
their use in time-critical scenarios. RBF and PODI were trained exclusively on an Intel(R)
Xeon(R) W-2135 CPU @ 3.70GHz with 12 cores. On the other hand, MLPG was trained using
an NVIDIA Quadro P4000 8BG GPU, while MLPL and MLPPR were trained on a NVIDIA
A100 40 GB GPU as they have a higher memory requirement. The two direct methods, RBF
and MLPG, take for training 4 and 25 seconds, respectively. PODI is the indirect method that
requires the least training time, taking only 7 seconds. On the other hand, the training of MLPL
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takes about 6 hours and MLPPR requires the same time plus 180 seconds for the fine-tuning of
the model. The evaluation time for all models is significantly under one second and is thus neg-
ligible with respect to the CFD simulation wall time of 19 hours using 64 cores on DLR’s High
Performance Computing System CARA. The direct methods, as they do not predict the surface
pressure coefficient distribution, are the ones that compute the global coefficient prediction the
fastest. For PODI the evaluation time is dominated by the computation of the global coefficient,
while for MLPL and MLPPR the computation of the pressure coefficient distribution takes most
of the prediction time.

Table 6: Computational cost in hours for CL models

CFD RBF MLPG PODI MLPL MLPPR
Training − 1× 10−3 7× 10−3 2× 10−3 6 6

One Evaluation 19 6× 10−8 3× 10−7 2× 10−5 5× 10−5 5× 10−5

5 CONCLUSIONS

This work studied the effect that is achieved in the prediction of global coefficients with the
use of a recently proposed physics-based regularization term that penalizes a multilayer per-
ceptron for local predictions (MLPL) of surface pressure coefficients when the predicted dis-
tributions yield global coefficients that deviate from the ground truth. This approach (MLPPR)
was tested for an industrial relevant 3D configuration known as the NASA Common Research
Model (NASA CRM) transport aircraft. It was compared to the same model without the reg-
ularization term (MLPL), and to proper orthogonal decomposition coupled with interpolation
(PODI). These were considered as indirect methods that first predict a surface pressure coeffi-
cient distribution and use the available integral formulas to calculate the global coefficients. A
comparison was also made to two direct methods that only yield predictions of global coeffi-
cients, namely, radial basis function interpolation (RBF) and multilayer perceptron for global
predictions (MLPG).

We found that the deep learning indirect methods, MLPL and MLPPR, provide in general
the best predictions for the lift and pitching moment coefficients. When using the physics-based
regularization term for the fine-tuning of a trained multilayer perceptron, only limited improve-
ments are achieved in the predictions of the lift and pitching moment coefficients. PODI, despite
being trained to predict the pressure coefficient distribution as well, did not achieve the same
accuracy as MLPL and MLPPR. With regards to the direct methods, the training of a multi-
layer perceptron to predict the global coefficients proved to be challenging given the relative
small amount of samples. Hence, in our experiments this network yielded the highest errors.
In contrast, the radial basis function interpolation approach was able to give more accurate pre-
dictions, despite being trained with the same amount of samples as the multilayer perceptron
MLPG. Regarding computational cost, all methods are capable of evaluating new samples in
nearly real-time. RBF is the method with the least training and evaluation time, while MLPL
and MLPPR require much more training time, since they predict the pressure coefficient distri-
bution but feature comparable evaluation times.

Future research could focus on the use of the studied physics-based regularization to train
the multilayer perceptron from scratch, instead of as a fine-tuning technique. Moreover, the in-
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corporation of adaptive weighting mechanisms to dynamically adapt the penalization parameter
of the global loss is a promising direction to pursue. In addition, more complex architectures
such as graph neural networks could also be extended with a physics-based regularization.
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7 APPENDIX

Table 7: RBF hyperparameters

Hyperparameter CL Cmy

interpolator Gaussian Gaussian Variable Exponent
augmenatation Linear Quadratic

scale True True
regularization True False

Table 8: MLPG hyperparameters

Hyperparameter CL Cmy

Initial learning rate 1.0× 10−3 1.0× 10−3

LR decay factor 0.999 0.999
Epochs 2000 2000

Batch size 15 15
Dimension of hidden layers 16 16

Hidden layers 5 6
Activation ReLU ReLU
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Table 9: PODI hyperparameters

Hyperparameter Value
mode retention 99.0%

interpolator Gaussian Variable Exponent
augmentation Linear

scale False
regularization True

Table 10: Base MLPL hyperparameters

Hyperparameter Value
Initial learning rate 1.0× 10−3

LR decay factor 0.999
Epochs 5000

Batch size 454, 404 (1 snapshot)
Dimension of hidden layers 128

Hidden layers 12
Activation ELU

Table 11: MLPPR continuation hyperparameters

Hyperparameter CL Cmy

Learning rate 1.0× 10−6 1.0× 10−6

Global penalty λglobal 1.0× 103 1.0× 104

Epochs 25 25
Trained Layers All Last 2
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