Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2023) We Won’t Get Fooled Again: When Performance Metric Malfunction Affects the Landscape of Hyperparameter Optimization Problems. In: 6th International Conference on Optimization and Learning, OLA 2023, 1824, pp. 148-160. Springer, Cham. International Conference on Optimization and Learning, OLA 2023, 2023-05-03 - 2023-05-05, Malaga, Spain. doi: 10.1007/978-3-031-34020-8_11. ISBN 978-303134019-2. ISSN 1865-0929.
PDF
3MB |
Official URL: https://rdcu.be/dgJY0
Abstract
Hyperparameter optimization (HPO) is a well-studied research field. However, the effects and interactions of the components in an HPO pipeline are not yet well investigated. Then, we ask ourselves: Can the landscape of HPO be biased by the pipeline used to evaluate individual configurations? To address this question, we proposed to analyze the effect of the HPO pipeline on HPO problems using fitness landscape analysis. Particularly, we studied over 119 generic classification instances from either the DS-2019 (CNN) and YAHPO (XGBoost) HPO benchmark data sets, looking for patterns that could indicate evaluation pipeline malfunction, and relate them to HPO performance. Our main findings are: (i) In most instances, large groups of diverse hyperparameters (i.e., multiple configurations) yield the same ill performance, most likely associated with majority class prediction models (predictive accuracy) or models unable to attribute an appropriate class to observations (log loss); (ii) in these cases, a worsened correlation between the observed fitness and average fitness in the neighborhood is observed, potentially making harder the deployment of local-search-based HPO strategies. (iii) these effects are observed across different HPO scenarios (tuning CNN or XGBoost algorithms). Finally, we concluded that the HPO pipeline definition might negatively affect the HPO landscape.
Item URL in elib: | https://elib.dlr.de/195996/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | We Won’t Get Fooled Again: When Performance Metric Malfunction Affects the Landscape of Hyperparameter Optimization Problems | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 27 May 2023 | ||||||||||||||||||||
Journal or Publication Title: | 6th International Conference on Optimization and Learning, OLA 2023 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Volume: | 1824 | ||||||||||||||||||||
DOI: | 10.1007/978-3-031-34020-8_11 | ||||||||||||||||||||
Page Range: | pp. 148-160 | ||||||||||||||||||||
Editors: |
| ||||||||||||||||||||
Publisher: | Springer, Cham | ||||||||||||||||||||
Series Name: | Communications in Computer and Information Science | ||||||||||||||||||||
ISSN: | 1865-0929 | ||||||||||||||||||||
ISBN: | 978-303134019-2 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Hyperparameter Optimization, Fitness Landscape Analysis, Benchmarking | ||||||||||||||||||||
Event Title: | International Conference on Optimization and Learning, OLA 2023 | ||||||||||||||||||||
Event Location: | Malaga, Spain | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 3 May 2023 | ||||||||||||||||||||
Event End Date: | 5 May 2023 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Traoré, Mr René | ||||||||||||||||||||
Deposited On: | 18 Jul 2023 12:52 | ||||||||||||||||||||
Last Modified: | 01 Sep 2024 03:00 |
Repository Staff Only: item control page