elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Synthetic Training Data for Semantic Segmentation of the Environment from UAV Perspective

Hinniger, Christoph und Rüter, Joachim (2023) Synthetic Training Data for Semantic Segmentation of the Environment from UAV Perspective. Aerospace, 10 (7). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/aerospace10070604. ISSN 2226-4310.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
23MB

Offizielle URL: https://www.mdpi.com/2226-4310/10/7/604

Kurzfassung

Autonomous unmanned aircraft need a good semantic understanding of their surroundings to plan safe routes or to find safe landing sites, for example, by means of a semantic segmentation of an image stream. Currently, Neural Networks often give state-of-the-art results on semantic segmentation tasks but need a huge amount of diverse training data to achieve these results. In aviation, this amount of data is hard to acquire but the usage of synthetic data from game engines could solve this problem. However, related work, e.g., in the automotive sector, shows a performance drop when applying these models to real images. In this work, the usage of synthetic training data for semantic segmentation of the environment from a UAV perspective is investigated. A real image dataset from a UAV perspective is stylistically replicated in a game engine and images are extracted to train a Neural Network. The evaluation is carried out on real images and shows that training on synthetic images alone is not sufficient but that when fine-tuning the model, they can reduce the amount of real data needed for training significantly. This research shows that synthetic images may be a promising direction to bring Neural Networks for environment perception into aerospace applications.

elib-URL des Eintrags:https://elib.dlr.de/195944/
Dokumentart:Zeitschriftenbeitrag
Titel:Synthetic Training Data for Semantic Segmentation of the Environment from UAV Perspective
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hinniger, ChristophNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rüter, Joachimjoachim.rueter (at) dlr.dehttps://orcid.org/0000-0002-5559-5481143182704
Datum:30 Juni 2023
Erschienen in:Aerospace
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:10
DOI:10.3390/aerospace10070604
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2226-4310
Status:veröffentlicht
Stichwörter:environment perception; semantic segmentation; synthetic data; game engine; sim-to-real gap; machine learning; unmanned aerial vehicle
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D IAS - Innovative autonome Systeme
DLR - Teilgebiet (Projekt, Vorhaben):D - SKIAS
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge
Institut für Flugsystemtechnik
Hinterlegt von: Rüter, Joachim
Hinterlegt am:28 Sep 2023 13:37
Letzte Änderung:28 Sep 2023 13:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.