Gottschling, Nina Maria and Campodonico, Paolo and Antun, Vegard and Hansen, Anders C. (2023) On accuracy and existence of approximate decoders for ill-posed inverse problems. International Symposium on Computational Sensing, 2023, 12-14 Jun 2023, Luxembourg.
![]() |
PDF
- Only accessible within DLR
217kB |
Abstract
Based on work by Cohen, Damen and Devore \and Bourrier et. al., we propose a framework that highlights the importance of knowing the measurement model $F$ and model class $\mathcal{M}_1$, for solving ill-posed (non-)linear inverse problems. Previous work has assumed that the measurement model is injective on the model class $\mathcal{M}_1$ and we obviate the need for this assumption. We establish fundamental upper and lower bounds on the reconstruction accuracy of an inverse problem in terms of the kernel size. The key definition introduced in this work, the kernel size of an inverse problem, only requires the measurement model $F$ and model class $\mathcal{M}_1$ to be computed. Thus, it is applicable in deep learning (DL) based settings where $\mathcal{M}_1$ can be an arbitrary data set.
Item URL in elib: | https://elib.dlr.de/195729/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | On accuracy and existence of approximate decoders for ill-posed inverse problems | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 13 June 2023 | ||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Inverse problems, Deep Learning, Approximation Theory | ||||||||||||||||||||
Event Title: | International Symposium on Computational Sensing, 2023 | ||||||||||||||||||||
Event Location: | Luxembourg | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Dates: | 12-14 Jun 2023 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Atmospheric Physics > Earth System Modelling | ||||||||||||||||||||
Deposited By: | Gottschling, Nina Maria | ||||||||||||||||||||
Deposited On: | 06 Jul 2023 09:28 | ||||||||||||||||||||
Last Modified: | 06 Jul 2023 09:28 |
Repository Staff Only: item control page