Nathaniel, Juan and Nyirjesy, Gabrielle and Watson, Campbell D and Albrecht, Conrad M and Klein, Levente J (2023) Above Ground Carbon Biomass Estimate with Physics-Informed Deep Network. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1297-1300. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10282838.
PDF
8MB |
Official URL: https://ieeexplore.ieee.org/document/10282838
Abstract
Nature-based carbon sequestration solution have the potential to capture carbon dioxide from the atmosphere and store it in vegetation biomass or soil. Forests are covering around 30% of Earth’s land surface and combined with forest longevity, trees/soil have the potential to store carbon from decades to centuries. One key challenge is to develop methodologies for high-resolution measurements of carbon sequestered and assess year to year change. Here, we use deep neural network to generate a wall-to-wall map of AGB within the Continental USA (CONUS) with 30-meter spatial resolution for the year 2021. We combine radar and optical multispectral imagery, with a physical climate parameter of Solar Induced Fluorescence (SIF)-based Growth Primary Production (GPP). Validation results show that a masked variation of UNet has the lowest validation RMSE of 37.93 +- 1.36 Mg C/ha, as compared to 81.95 +- 0.01 Mg C/ha (linear regressor), 53.37 +- 0.05 Mg C/ha (gradient boosting), and 52.30 +- 0.03 Mg C/ha for random forest algorithm. Furthermore, models that learn from SIF-based GPP in addition to radar and optical imagery reduce validation RMSE by almost 10% and the standard deviation by 40%.
Item URL in elib: | https://elib.dlr.de/195499/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Above Ground Carbon Biomass Estimate with Physics-Informed Deep Network | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282838 | ||||||||||||||||||||||||
Page Range: | pp. 1297-1300 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | environmental monitoring, laser radar, geospatial analysis, big data applications, weak supervision | ||||||||||||||||||||||||
Event Title: | IGARSS 2023 | ||||||||||||||||||||||||
Event Location: | Pasadena, CA, USA | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 16 July 2023 | ||||||||||||||||||||||||
Event End Date: | 21 July 2023 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Albrecht, Conrad M | ||||||||||||||||||||||||
Deposited On: | 22 Jun 2023 13:49 | ||||||||||||||||||||||||
Last Modified: | 01 Sep 2024 03:00 |
Repository Staff Only: item control page