Nathaniel, Juan und Nyirjesy, Gabrielle und Watson, Campbell D und Albrecht, Conrad M und Klein, Levente J (2023) Above Ground Carbon Biomass Estimate with Physics-Informed Deep Network. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1297-1300. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10282838.
PDF
8MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10282838
Kurzfassung
Nature-based carbon sequestration solution have the potential to capture carbon dioxide from the atmosphere and store it in vegetation biomass or soil. Forests are covering around 30% of Earth’s land surface and combined with forest longevity, trees/soil have the potential to store carbon from decades to centuries. One key challenge is to develop methodologies for high-resolution measurements of carbon sequestered and assess year to year change. Here, we use deep neural network to generate a wall-to-wall map of AGB within the Continental USA (CONUS) with 30-meter spatial resolution for the year 2021. We combine radar and optical multispectral imagery, with a physical climate parameter of Solar Induced Fluorescence (SIF)-based Growth Primary Production (GPP). Validation results show that a masked variation of UNet has the lowest validation RMSE of 37.93 +- 1.36 Mg C/ha, as compared to 81.95 +- 0.01 Mg C/ha (linear regressor), 53.37 +- 0.05 Mg C/ha (gradient boosting), and 52.30 +- 0.03 Mg C/ha for random forest algorithm. Furthermore, models that learn from SIF-based GPP in addition to radar and optical imagery reduce validation RMSE by almost 10% and the standard deviation by 40%.
elib-URL des Eintrags: | https://elib.dlr.de/195499/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Above Ground Carbon Biomass Estimate with Physics-Informed Deep Network | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282838 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1297-1300 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | environmental monitoring, laser radar, geospatial analysis, big data applications, weak supervision | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||||||||||
Veranstaltungsort: | Pasadena, CA, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||||||
Hinterlegt am: | 22 Jun 2023 13:49 | ||||||||||||||||||||||||
Letzte Änderung: | 01 Sep 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags