Pande, Shivam and Ait Ali Braham, Nassim and Wang, Yi and Albrecht, Conrad M and Banerjee, Biplab and Zhu, Xiao Xiang (2023) Semi-Supervised Learning for Hyperspectral Images by Non-Parametrically Predicting View Assignment. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 6085-6088. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10282971.
PDF
997kB |
Official URL: https://ieeexplore.ieee.org/document/10282971
Abstract
Hyperspectral image (HSI) classification is gaining a lot of momentum in present time because of high inherent spectral information within the images. However, these images suffer from the problem of curse of dimensionality and usually require a large number samples for tasks such as classification, especially in supervised setting. Recently, to effectively train the deep learning models with minimal labelled samples, the unlabeled samples are also being leveraged in self-supervised and semi-supervised setting. In this work, we leverage the idea of semi-supervised learning to assist the discriminative self-supervised pretraining of the models. The proposed method takes different augmented views of the unlabeled samples as input and assigns them the same pseudo-label corresponding to the labelled sample from the downstream task. We train our model on two HSI datasets, anemly Houston dataset (from data fusion contest, 2013) and Pavia university dataset, and show that the proposed approach performs better than self-supervised approach and supervised training.
Item URL in elib: | https://elib.dlr.de/195498/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||||||
Additional Information: | https://arxiv.org/abs/2306.10955 | ||||||||||||||||||||||||||||
Title: | Semi-Supervised Learning for Hyperspectral Images by Non-Parametrically Predicting View Assignment | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282971 | ||||||||||||||||||||||||||||
Page Range: | pp. 6085-6088 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Hyperspectral images, self-supervised learning, semi-supervised learning | ||||||||||||||||||||||||||||
Event Title: | IGARSS 2023 | ||||||||||||||||||||||||||||
Event Location: | Pasadena, CA, USA | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 16 July 2023 | ||||||||||||||||||||||||||||
Event End Date: | 21 July 2023 | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Albrecht, Conrad M | ||||||||||||||||||||||||||||
Deposited On: | 07 Jul 2023 08:22 | ||||||||||||||||||||||||||||
Last Modified: | 01 Sep 2024 03:00 |
Repository Staff Only: item control page