Pande, Shivam und Ait Ali Braham, Nassim und Wang, Yi und Albrecht, Conrad M und Banerjee, Biplab und Zhu, Xiao Xiang (2023) Semi-Supervised Learning for Hyperspectral Images by Non-Parametrically Predicting View Assignment. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 6085-6088. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10282971.
PDF
997kB |
Offizielle URL: https://ieeexplore.ieee.org/document/10282971
Kurzfassung
Hyperspectral image (HSI) classification is gaining a lot of momentum in present time because of high inherent spectral information within the images. However, these images suffer from the problem of curse of dimensionality and usually require a large number samples for tasks such as classification, especially in supervised setting. Recently, to effectively train the deep learning models with minimal labelled samples, the unlabeled samples are also being leveraged in self-supervised and semi-supervised setting. In this work, we leverage the idea of semi-supervised learning to assist the discriminative self-supervised pretraining of the models. The proposed method takes different augmented views of the unlabeled samples as input and assigns them the same pseudo-label corresponding to the labelled sample from the downstream task. We train our model on two HSI datasets, anemly Houston dataset (from data fusion contest, 2013) and Pavia university dataset, and show that the proposed approach performs better than self-supervised approach and supervised training.
elib-URL des Eintrags: | https://elib.dlr.de/195498/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Zusätzliche Informationen: | https://arxiv.org/abs/2306.10955 | ||||||||||||||||||||||||||||
Titel: | Semi-Supervised Learning for Hyperspectral Images by Non-Parametrically Predicting View Assignment | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282971 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 6085-6088 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Hyperspectral images, self-supervised learning, semi-supervised learning | ||||||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Pasadena, CA, USA | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||||||||||
Hinterlegt am: | 07 Jul 2023 08:22 | ||||||||||||||||||||||||||||
Letzte Änderung: | 01 Sep 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags