Schefels, Clemens and Schlag, Leonard and Del Moro, Agnese and Helmsauer, Kathrin and Lesch, Tobias and Göttfert, Tobias (2023) Bringing a Machine Learning Based Novelty Detection Software Tool from Research to Production. 17th International Conference on Space Operations (SpaceOps 2023), 06.-10. Mär. 2023, Dubai, Vereinigte Arabische Emirate.
![]() |
PDF
541kB |
Abstract
This paper presents the process of bringing a machine learning based novelty detection software tool from research to production. Moreover, it sums up the necessary changes that needed to be done for developing a scientific software library into a software product with an application in space operations. This process considers the needs and expectations of all stakeholders. The system for which this process is shown is the Automated Telemetry Health Monitoring System (ATHMoS) developed at the German Space Operations Center of the German Aerospace Center. In its early phase as a research software, it paved the way for the novelty detection research. After its value for the satellite engineer’s daily work became visible, it evolved to a robust and resilient software tool that can be used in a productive environment to support the engineers in their routine work. Furthermore, the integration of the system into our Visualization and Data Analysis framework is explained. This framework has a web-based front-end for the interactive exploration and analysis of satellite telemetry data.
Item URL in elib: | https://elib.dlr.de/195314/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | Bringing a Machine Learning Based Novelty Detection Software Tool from Research to Production | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | telemetry, time series, machine learning, data analysis, space operations, software deployment | ||||||||||||||||||||||||||||
Event Title: | 17th International Conference on Space Operations (SpaceOps 2023) | ||||||||||||||||||||||||||||
Event Location: | Dubai, Vereinigte Arabische Emirate | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Dates: | 06.-10. Mär. 2023 | ||||||||||||||||||||||||||||
Organizer: | Mohammed Bin Rashid Space Centre (MBRSC) | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Control Centre Technology | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Space Operations and Astronaut Training > Mission Technology | ||||||||||||||||||||||||||||
Deposited By: | Göttfert, Dr. Tobias | ||||||||||||||||||||||||||||
Deposited On: | 31 May 2023 09:33 | ||||||||||||||||||||||||||||
Last Modified: | 31 May 2023 09:33 |
Repository Staff Only: item control page