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Abstract
This  paper  presents  the  process  of  bringing a  machine learning based  novelty  detection software  tool  from 

research  to  production.  Moreover,  it  sums up  the  necessary  changes  that  needed to  be  done for  developing  a  
scientific software library into a software product with an application in space operations. This process considers the 
needs and expectations of all stakeholders.

The system for which this process is shown is the Automated Telemetry Health Monitoring System (ATHMoS) 
developed at the German Space Operations Center of the German Aerospace Center. In its early phase as a research 
software, it paved the way for the novelty detection research. After its value for the satellite engineer ’s daily work 
became visible, it evolved to a robust and resilient software tool that can be used in a productive environment to 
support the engineers in their routine work. Furthermore, the integration of the system into our Visualization and 
Data Analysis framework is explained. This framework has a web-based front-end for the interactive exploration and 
analysis of satellite telemetry data.
Keywords: Telemetry, Time Series, Machine Learning, Data Analysis, Space Operations, Software Development.

Acronyms/Abbreviations
American Standard Code for Information Interchange (ASCII),
Anomaly Detection algorithm based on a sparse decomposition into a DICTionary (ADDICT),
Application Programming Interface (API),
Automated Telemetry Health Monitoring System (ATHMoS),
Central Processing Unit (CPU),
Comma-Separated Values (CSV),
Computer Science and Engineering (CSE),
Density-Based Spacial Clustering of Applications with Noise (DBSCAN),
Software Development and IT Operations (DevOps),
European Organization for the Exploitation of Meteorological Satellites (EUMETSAT),
Extract, Transform, and Load (ETL),
German Aerospace Center / Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR),
German Space Operations Center (GSOC),
Gigabyte (GB),
Gravity Recovery and Climate Experiment-Follow-On (GRACE-FO),
Graphical User Interface (GUI),
k Nearest Neighbors (k-NN),
Long-Short Term Memory (LSTM),
Machine Learning (ML),
Mission Data Access (MiDA),
National Center for Space Studies / Centre National d'Études Spatiales (CNES),
Outlier Probability Via Intrinsic Dimension (OPVID),
Random-Access Memory (RAM),
Terabyte (TB),
University of California, Riverside (UCR),
Virtual Machine (VM),
Visualization and Data Analysis software (ViDA)

SpaceOps-2023, ID #444 Page 1 of 10

mailto:clemens.schefels@dlr.de


17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright ©2023 by Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR). Published by the Mohammed Bin Rashid Space Centre (MBRSC) 

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

1. Introduction
In satellite operations, telemetry data plays a critical role to track the satellite's system status. Therefore, modern  

satellites collect telemetry data of thousands of parameters. For example, the GRACE Follow-On satellites, operated  
by  the  German  Space  Operations  Center  (GSOC)  at  the  German  Aerospace  Center  (DLR),  define  about 
80,000 unique housekeeping parameters each. To help system engineers and operators to inspect this huge amount of 
data, many space operation centers put effort into the research and prototype development of machine learning based 
software tools for the analysis of these telemetry data. The next step, to bring such kind of software tools into  
productive use, is quite a challenge as it has to respect various needs of diverse user groups. Only if these needs are  
tackled, all users’ routine work and the operation center at the whole will profit from a new software tool, which then  
will be used regularly.

This paper starts with a review of current novelty detection systems and related works in Section 2 about novelty 
detection with the focus on the space domain.

In Section 3, we first give a quick overview of the Automated Telemetry Health Monitoring System (ATHMoS), 
a novelty detection tool, developed at GSOC. ATHMoS uses semi-supervised machine learning methods to detect  
novel behavior in satellite telemetry data by learning the satellite’s nominal behavior from historic data. The historic 
data contains nominal as well as abnormal behaviors. In order to determine if there are novelties in new data sets, we  
use the Outlier Probability Via Intrinsic Dimension (OPVID) algorithm. This very generic approach doesn’t need 
tuning or adjustments for each single parameter. Moreover, ATHMoS has proven its reliability and efficiency in 
many research projects.

Next, in Section 4, the main part of this paper, we compare application of ATHMoS in a research environment to  
its application in a production environment. ATHMoS was primarily developed for research purposes. Therefore, it 
is  a  flexible  framework,  that  can  easily  and  quickly  be  adapted to  data  scientists’ specific  analysis  tasks.  The 
architecture reflects its scientific usage. To bring ATHMoS to production, it has to fulfill different requirements and 
support different use-cases of different stakeholders. We highlight the necessary changes in the ATHMoS framework 
to support all these new needs. The main part of the paper concludes with a detailed description on how we integrate 
ATHMoS into  our  Visualization  and  Data  Analysis  software  (ViDA)  to  display  the  detected  novelties  in  the 
satellite’s  telemetry  data.  However,  we  still  give  the  users,  e.g.,  data  scientists,  the  possibility  to  access  raw 
ATHMoS data for individual analysis tasks.

This paper finishes with a conclusion in Section 5 and gives a short outlook on follow-up projects related to 
ATHMoS at GSOC.

2. Related Works
Machine learning and its capabilities to detect novelties in various domains has made its way into many areas of 

research and applications, ranging from fraud or malware detection to medical image analysis [1]. It is no surprise 
that it has also made its way into the domain of satellite operations for novelty detection as well as other areas such 
as mission planning or image processing [2].

With regard to novelty detections, various methodologies are currently being researched and applied to satellite  
telemetry with the goal  of  benefiting operations on ground.  The Centre National  d'Études Spatiales  (CNES) is 
employing a One-Class Support Vector Machine in their NOSTRADAMUS tool and investigating possible on-board 
applications [3].  EUMETSAT  applies  a  distance-based  k  Nearest  Neighbors  (k-NN)  approach  and  is  gaining  
experience in the challenges an operational implementation brings along [4].

Investigations into multivariate anomaly detection by Tariq et al. propose a multivariate convolutional Long-
Short Term Memory (LSTM) network with mixtures of probabilistic principal component analysis to be trained per  
subsystem [5].  Other  approaches for  multivariate  detections by B.  Pilastre  and supported by CNES and Airbus 
Defence  & Space  use a  sparse  decomposition  of  a  signal  into  a  dictionary  as  part  of  a  new algorithm named 
ADDICT [6]. This new algorithm allows including both continuous as well as discrete signals in its learned model.

As part of the ESA project Deep Learning 4 Space, AIKO also has proposed an AI-based framework for on-
ground anomaly detection and root cause analysis [7].

In the next section, we will describe our machine learning system for novelty detection in more detail and present 
its workflows.

3. ATHMoS – Automated Telemetry Health Monitoring System
The  Automated  Telemetry  Health  Monitoring  System developed  at  GSOC is  not  a  single  algorithm,  but  a 

sequence of steps combined in a larger workflow. We will give a short overview of the most important workflow  
steps comprising ATHMoS. For a detailed description of the main algorithms, see [8]. While the acronym ATHMoS 
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contains the word System, it is separate from the actual software and hardware it runs on which is described in the 
main part of this paper in Section 4.

It is important to note that both, the core algorithm used for testing and training, and the pre- and post-processing  
steps, play an important role and are equally vital to the quality of the results.

3.1 Pre-processing
The raw satellite telemetry data constitutes the main input to the ATHMoS workflow. Before training a model or  

testing new data against the model, it needs to be pre-processed as a first step. This ensures no incomplete data is  
used and auxiliary data as input for the training and testing steps are derived from the raw data. Overall, there are  
three main pre-processing steps applied in the beginning of the workflow:

1. Detect gaps in the timeseries data hindering the derivation of senseful statistics and remove time windows  
containing these gaps. The removed data will be omitted in the remainder of the workflow.

2. Classify the parameter type in order to derive an optimized set of pre-defined features for the feature vector  
computation in  the  next  steps.  Using the  different  features  for,  e.g.,  telemetry  parameters  representing 
discrete flags and telemetry parameters representing physical attributes such as temperatures yields better 
results and allows for easier modifications to capture new behaviours.

3. In addition to the raw timeseries data, prepare a smoothed timeseries by removing possible noise.  The  
smoothed timeseries will be used for extracting features in the next workflow steps as well.

3.2 Training
The next main workflow step takes care of training the model which can be seen as a representation of the 

nominal behavior of the satellite’s telemetry. Especially initially, generating the model is the task requiring the most  
resources. Typically, a year of raw time-series data is loaded and processed for each telemetry parameter as there 
may be fluctuations in the parameter’s behavior over this time frame.

The first step of the training is to take the pre-processed data and derive feature vectors by applying a sliding 
window. Using a window size of ,e.g., 1.5 hours for low Earth orbit satellites and step size of 30 minutes, this yields 
around 17,500 feature vectors over the training period. Details regarding the choice and advantages of the chosen  
features are described in [9]. As our input data is not sufficiently labeled, we also apply an enhancement of the 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm [8, 10]to clean up the 
feature vectors of obvious outliers, making the training set more robust.

To generate our model, the core algorithm [8] is applied to the feature vectors and intermediate results are stored, 
comprising the trained model. Doing so allows a quick model inference during the testing step which we describe  
next.

3.3 Testing
The current iteration of ATHMoS is not designed for real time data and uses dumped housekeeping data as its 

input source. Thus, it is ideally run on a daily basis for the last day or days of data.
While the pre-processing and feature vector computation are identical to the training, the testing step computes a  

novelty score for each feature vector and corresponding time window of the test  telemetry data.  The computed 
novelty score can be seen as a measure of how different new data behaves compared to the data used for training the  
model. This is done for each feature vector by temporarily extending the precomputed model (see Section 3.2) by 
that feature vector and deriving the score following algorithm [8] for the temporarily added feature vector only.

The novelty scores are used to label each feature vector and its time window accordingly, see Fig. 1. We use the 
fact that our time windows are overlapping to increase the quality of our labels. This is done by preventing single 
threshold breaches of the score which are not significant enough to trigger the threshold in neighboring overlapping 
windows to be labeled as a so-called high priority detection.

3.4 Model Update and Relabeling
To ensure the model contains the recent behaviors, it is recomputed periodically, typically on a weekly basis. It  

will always take the last year of data into account, starting from the day the recomputation is triggered on.
For generating the updated model, it only considers the feature vectors which were not flagged as high priority  

during testing and were not omitted during training for the model recomputation. We use this subset as our updated 
nominal data.

To allow the workflow to profit from our engineers’ expert knowledge, engineers are given the option to change 
the priority labels assigned to the data by ATHMoS, thereby relabeling the data in our database. One could, e.g., set  
false positive detections, which ATHMoS labeled as high priority, back to nominal. The updated labels will also be
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considered for the model update the next time it is executed. This further continually improves the quality of the  
results and ensures the model is in line with the expectation and understanding of our users.

4. From Research to Production
In this section, we describe the applications and use cases for a novelty detection system. It’s split into two parts,  

the application in a research environment and the application in a production environment. At first ATHMoS was 
used as a research system but after proving its capabilities it was brought into production. For both applications, the  
realization of a system as described in Section 3 has to meet different requirements in respect to the software and the  
hardware it runs on.

4.1 Research Application
At the beginning, ATHMoS was a research project only. It  paved the way for the novelty detection research at 

our institute.  Moreover,  it  provided a system to gain experience with this  kind of  technology and enhance our  
knowledge. After defining its workflows and algorithms as described in Section 3, the design and architecture of its 
actual implementation reflect its scientific usage. In research, the single tasks of the users, i.e., the data scientists, are 
very specific and often unique. Data scientists use ATHMoS on a very personalized level within their own analysis  
environment, on their own hardware, commonly standard laptops. In general, data scientists have a lot of expert 
knowledge and can adapt the code of ATHMoS to their needs. Therefore, it is developed as a very flexible and  
adaptable Python [11] framework.

A typical workflow of a data scientist who uses ATHMoS looks as follows: at the beginning the data scientist 
receives a new task from e.g., a satellite system engineer. Examples of such tasks can be to explore the reason for an  
unexpected behavior of a satellite or just to explore the telemetry data of a satellite component in detail. Since the  
research activities of the DLR are not limited to the space domain only, our data scientists also use this opportunity  
to test and tune ATHMoS on various other kinds of data. Additionally, external partners, like international research 
institutes and universities,  cooperate with us in our research on novelty detection. That way, we can constantly  
improve  the  accuracy  of  ATHMoS  by  developing  new  pre-processing  methods  or  enhancements  to  the  core  
algorithm.

After receiving a task, the data scientist has to load the provided data into their personal research environment. In 
our institute, scientists commonly use Python scripts or Jupyter [12] notebooks for analyzing such kind of tasks. The 
data is usually in a very task specific format like in CSV format, MS EXCEL file format, or just a (semi-)structured  
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ASCII file. For in-house satellite missions, the data are in the same format but for research activities with other  
institutes, the variety of data formats is broad. To name one example: the open UCR Time Series Classification  
Archive [13, 14] with tab-separated values, published by the Computer Science and Engineering (CSE) Department  
at  the  University  of  California,  Riverside [15],  which  we use  with  external  partners  to  benchmark our  system. 
Therefore, for many of the new tasks, the data scientist has to adapt its data load pipeline to the present file format,  
especially when the task is not related to the satellite domain, in order to read the data.

After loading the data, the scientist has to pre-process and analyze the data. The ATHMoS framework comes 
with many possible adjustments to be adapted to the data it processes. For example, the data scientist can define a  
different set of features or a different time window length. This tuning of the hyperparameters, the finding of the  
right configuration for ATHMoS, is an important task during the analysis process.

After training the model with the nominal data, the scientist can test the data with the trained model as described  
in the section above. Next follows, the interpretation and presentation of the results, i.e., of the detected novelties. 
Here, each data scientist has their favorite diagram, plot, or data output to analyze the data. Last, the scientist has to  
present the results to the system engineer in a meaningful way and explain the findings to them.

To conclude this section, as one can see, most of these workflow steps are very task specific. In contrast to that,  
we will take a closer look at the workflow in a production environment in the next section.

4.2 Production Application
During the research process, the value of ATHMoS for the satellite engineer’s daily work became visible. One 

important  task of  an engineer  is  to  check the  satellite  parameters  for  unexpected,  i.e.,  novel  behavior.  Modern 
satellites provide data of thousands of telemetry parameters which make it very time-consuming for the engineers to  
check each of them in detail––more system engineers would be needed. As a consequence of this, the operation of 
modern satellites would become more expensive. To overcome this obstacle, the usage of an automated telemetry 
health monitoring system that checks all parameters and informs the engineer in case of novel behaviors would be a  
solution. With its help, system engineers could concentrate on difficult tasks and let the software system do the  
routine work.

To convince satellite engineers as well as the groups in charge of operations to use a system like this, it has to  
meet several requirements. First, its usage has to be easy and intuitive so that the engineers do not have to spend their  
valuable  time on  learning  how to  use  the  system.  More  important  is  that  the  results  the  system generates  are 
reproducible  and  understandable.  The process  of  the  calculation  should  be  deterministic  and transparent  to  the 
engineers. For deeper investigations and individual analyses, the system has to provide an Application Programming 
Interface (API) to access and use the calculated results.

But not only engineers are customers of such a system for the routine satellite operations, but also the Software 
Development and IT Operations (DevOps) team that has to run and maintain the software. From their point of view, 
the software needs to be easy to install, operate, and maintain. For new mission, the adaptation effort has to be  
minimal. The requirements to the hardware need to be moderate to guarantee an economical operation. Moreover, 
the operational costs in total should be kept low to make it attractive for further satellite missions.

The ATHMoS Python library, described in Section 4.1, is developed for scientific purpose and does not meet all 
of  these  discussed  requirements.  At  the  beginning  of  the  process  of  bringing  ATHMoS  into  production,  the 
ATHMoS Python library was refactored, and all parts were separated into single Python modules. That made the 
library easier to maintain and easier to adapt to the routine use case. Moreover, new improvements from research, 
e.g.,  a  new  pre-processing  step,  can  be  integrated  straightforward  into  the  production  environment  because 
dependencies are kept minimal.

After the refactoring, the extract, transform, and load (ETL) module was built. It provides the connection to the  
production  database,  containing  the  telemetry  data,  the  transformation  of  the  telemetry  data  into  an  ATHMoS 
suitable format, and the load methods for the workflows. In contrast to the research application, the data structure in 
the production database is stable and similar for all satellite missions. The persistence of the ATHMoS results is 
included in the production database.

One key challenge is to automate the single ATHMoS workflow steps from Section 3 in a robust and resilient 
way. Therefore, we use a standard ML framework, Metaflow [16], developed by Netflix for its machine learning 
software stack. This framework can automatically be executed by a cron job, the UNIX job scheduler, or various  
other task triggers based on e.g., data availability.

At last, the presentation of the ATHMoS results is implemented into the ViDA system, which is explained in 
detail in Section 4.2.3.
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4.2.1 Workflow
The workflows of ATHMoS, as described in Section 3, are implemented in the Metaflow framework. Metaflow 

provides  a  unified API  to  the whole infrastructure stack  that  is  required to  execute  data  science  projects  from 
prototype to production [16]. Metaflow takes care of the low-level infrastructure: data, compute, orchestration, and 
versioning. Furthermore, it has a solid logging functionality which is essential for the DevOps team to quickly detect 
and fix system failures or errors within the workflow executions. With its web-based user interface, DevOps can get  
a quick overview over the current status of the calculations (see Fig. 2).

The building blocks from the scientific application could be consolidated into the following workflows.. At the 
beginning of each workflow, the configuration of the ATHMoS algorithms and of the database is loaded:

 Train Parameter: in this workflow, the historic model for the novelty detection is created. After loading the  
historic telemetry data and the type of the current parameter (continuous or discrete) from the database, the 
feature vectors and the model are calculated for each satellite parameter. The feature vectors are persisted 
into the database, while the models are stored as a file artifact. This step needs to be done just once at the  
beginning and takes the most computational time.

 Test Parameter: the aim of this workflow is to detect novel behavior in current telemetry data. Therefore,  
the  current  telemetry  data  has  to  be  loaded  from the  database  and  tested  against  the  model  for  each 
parameter. The historic model, calculated before, is loaded from files and the feature vectors for the current  
data are calculated. The feature vectors are tested against the historic and the recent models and anomaly 
scores are derived. The scores and feature vectors are stored into the database. This has to be done on a 
regular basis (e.g., each night) to provide the newest data about novel behavior to the engineers.

 Retrain Parameter: the aim of this workflow is to keep the models up-to-date. With the retraining, new 
nominal behavior is taken into account and the models are updated. This needs to be done on a regular basis 
but not as frequently as the “Test Parameter” workflow (e.g., once per week).

Next, in the Section 4.2.2, the system and hardware architecture for the production application of ATHMoS is 
explained.

4.2.2 System Architecture
To  be  able  to  run  the  described  operational  workflow  in  a  continuous  and  reliable  fashion,  a  suitable 

infrastructure is needed. Since the ATHMoS algorithm itself is relatively frugal in comparison to, e.g., deep-learning 
approaches, the amount of computing power to support the novelty detection is not very high. However, the desire to  
include more and more telemetry parameters and satellites into the monitoring, or to run more complex analyses in 
the future (like multivariate novelty detection or additional algorithms) makes it necessary to envision a scalable  
architecture from the get-go. On the other hand, since we had no readily available cluster resources and had to set up  
the infrastructure ourselves, the system should also start out small and only be extended once it becomes necessary.
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We evaluated two common frameworks for ML workflow deployments, Kubeflow and Metaflow, to see whether to  
make use of them. For a few reasons, Metaflow was chosen to be tried and adopted:

 Our initial goal was to get the ATHMoS workflows running operationally in their default, “regular” way as  
quick as possible. As Kubeflow is a far broader system that comes with considerable setup effort, while  
Metaflow is focussing on and limited to the processing pipeline, it is quicker to adopt and requires less 
setup.

 Kubeflow requires to be deployed on an existing Kubernetes cluster, which we might have available in the 
future. At the beginning, we did not want to have Kubernetes a requirement for the system.

 Metaflow is a Python library that could easily be added to the refactored ATHMoS code, which is also 
written in Python. It allows to test the processing workflow locally on the development computer and then 
push the resulting validated workflow onto a server or cluster. As we were just starting out, this allowed for 
a smooth transition from local algorithm development to the DevOps and infrastructure work of scaling up 
the algorithm.

Currently,  regular  ATHMoS  processing  is  running  in-house  on  dedicated  servers  hosting  all  VMs  of  the 
ViDA/ATHMoS system. Out of the full capacity of the infrastructure, ATHMoS currently has 16 CPUs and 96 GB 
RAM  available  (see  also [17]).  Current  performance  figures  show  that  a  common  satellite  mission,  having 
600 parameters (the most important once) monitored overnight, will keep the system busy for about one hour per  
night  for  the  novelty  detection  (“test  parameter”)  and  an  additional  1.5 hours  for  the  periodic  model  updating 
(“retrain parameter”), using 8 CPUs in parallel. We estimate that the current hardware setup is able to support up to  
10 satellites  for  their  routine  novelty  detection  by  dedicating  more  resources  to  the  ATHMoS  processes  and 
staggering the times when they are started.

Fig. 3 shows a rough schematic view of the ATHMoS infrastructure: telemetry data is read from one or more 
TimescaleDB instances and the resulting feature vectors and anomaly scores are written back for ViDA to pick up  
the  results.  A  small  setup  of  a  Metaflow  service  was  deployed,  including  its  metadata  store  and  a  MinIO  
S3-compatible object store, which are necessary for the internal workings of Metaflow, and the storage of the ML
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Fig. 3. Schematic overview over the services constituting the ATHMoS infrastructure. TimescaleDB 
holds the input data (telemetry) and stores the results of ATHMoS, which can be made available to the 
users  (operators,  spacecraft  engineers)  via  the  ViDA  application.  The  object  store  is  used  for  the 
persistence of data passed between the workflow steps and the trained ML models. The Metaflow service  
keeps track of executed workflows and their status, for the DevOps team to monitor the inner workings of 
the system. Scheduling and orchestration are currently handled inflexibly and are subject to improvement 
in the future
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models and intermediate results of the workflow steps, respectively. For a full production-ready setup that follows 
Metaflow recommendations, this might have to be enlarged in the future; however, currently the system fulfills the  
needs of the routine processing of ATHMoS. Finally, the ATHMoS code, implemented as Metaflow workflows, is  
running on the processing VMs and is triggered via a simple, cron-based scheduling script. The code makes use of 
our Mission Data Access (MiDA) Python library for accessing the telemetry data from the TimescaleDB instances, 
and reports all statistics and logs to the Metaflow service to be inspectable via its GUI.

In its current form, the processing pipelines are deployed manually and started via a fixed schedule, which is fine  
for the momentary use case. In the future, this part of the system will be extended and more scalable and dynamic  
ways to orchestrate and schedule the workflows will be added.

4.2.3 Result Visualization and Data Analysis
The novelty detection results from ATHMoS are made available to the users through the Visualization and Data 

Analysis  (ViDA) [17]  tool,  that  serves  as  the  ATHMoS web  interface.  ViDA  is  a  comprehensive  framework,  
consisting  of  a  central  user  interface  (UI)  and  underlying micro-services  to  ingest,  pre-process,  and  access  the 
telemetry  data  and  other  data  products.  Through  ViDA,  the  engineers  can  monitor  the  status  of  the  satellites, 
visualize the telemetry data up to the full mission lifetime (e.g., >10 years of data) in seconds, and perform their 
daily analyses and checks.

The ATHMoS results are retrieved from the database by the ViDA backend via GraphQL queries and served to 
the web front-end to be displayed in dashboards as aggregated data, showing the general status of a satellite in the  
past day or week. The high-priority and trending novelties are also displayed in time-series plots, together with the  
telemetry data, to flag time ranges where potential anomalies have been found (Fig. 4). This type of visualization was 
realized to ease and speed up the telemetry inspection process by highlighting the parameters and time ranges where 
the engineers should focus on to identify potential problems.

Further types of graphical visualizations of the ATHMoS results, specifically aimed to improve the explainability 
of the detected novelties according to the users’ needs, are under development. Besides the graphical views, ViDA 
will enrich the telemetry and ATHMoS data with contextual information, such as the telecommand logs, on-board  
event logs, anomaly reports, etc., thus providing a more complete view of the status of the satellite at any selected 
time range.

Besides the standard analyses and presentations of the ATHMoS data via ViDA, we provide to the users the 
MiDA Python library, to conduct individual analyses. MiDA supports the full range of data that is present in the  
database  including  telemetry,  feature-vector  data  for  ATHMoS  analysis  and  several  further  information  for 
housekeeping. With MiDA, a data scientist can easily obtain and query satellite data and include the results into their 
own analysis environment like Python scripts or Jupyter notebooks.

In future developments, ViDA will also implement an interface where the users can label the telemetry data and 
novelties, e.g., in case of false-positive or false-negative detection. These labels will be stored in the database and  
used by the ATHMoS algorithms to improve the data models for future data processing, thus making the novelty  
detection and classification more and more accurate and reliable over time.
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Fig. 4. Example of a multi-parameter time series plot in ViDA showing several ATHMoS detections marked as 
vertical bars (high priority detections in red, trending detections in yellow)
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5. Conclusions and Future Work
This article described the way of bringing a machine learning based novelty detection software tool from research 

to production. It has first briefly introduced the Automated Telemetry Health Monitoring System (ATHMoS) as a  
sequence of steps combined in a larger workflow. The system was originally designed as a research project to enable 
the novelty detection research at our institute. With a short comparison of the requirements of such a research project 
in contrast to the requirements of an application in an operative context, the concrete changes to the system are  
provided. For the presentation of the calculated novelty detections, the integration of the ATHMoS system into our 
ViDA framework was explained.

In  the  future,  we  want  to  enhance  ATHMoS by  bringing  the  experience  we  are  now collecting  from the 
productive application back to research. With the bigger data basis from the operational satellite service, we will  
improve  the  core-algorithm,  like  more  parameter  specific  feature  vectors,  and  pre-processing  steps,  like  using 
different smoothing methods, to enhance the quality of the novelty detection. Moreover, with the collected re-labeled 
data by the system engineers, we can filter out maneuvers or unwanted novelty detections and build a database with 
standard satellite behavior.

Furthermore, we are planning to execute the novelty detection directly on the satellite in space to find novelties 
earlier and give the engineers more time to react. This would also include a real time analysis of the telemetry data.  
The frugal and effective algorithms of ATHMoS are very well suited for that approach. First attempts had already 
been conducted and a successful prototype for the real-time novelty detection has been tested in a lab environment.

After setting up the system for the satellite operational application, we want to expand our costumer basis further  
by thinking about other application domains. One obvious idea would be to check the telemetry data from the ground 
segment like from the satellite dishes. Domains beyond space operations like aerospace, energy, and transportation 
are also considered.

In the distant future, we want to take advantage of Quantum technology for our novelty detection methods. The 
DLR, as one of Germany's leading research centers, is investing as well in fundamental research as in software 
development  and  application  analysis  on  quantum  computing [18].  As  a  first  step,  we  research  on  the  state 
preparation of quantum computers for satellite telemetry data. Later on, we will research on how to extend or/and 
replace part of ATHMoS with quantum enhance technology.

Acknowledgements
The authors are thankful to Dr. Martin Wickler, Dr. Edith Maurer, all members of the DLR MBT-Team, and  

Heavens Above GmbH for their valuable support and fruitful discussions.

References
[1] R.  Chalapathy  and  S.  Chawla,  “Deep  Learning  for  Anomaly  Detection:  A  Survey”, 

https://arxiv.org/abs/1901.03407/, 2019.
[2] P. Miralles et al.,  “Machine Learning in Earth Observation Operations: A review”, Proceedings of the 72nd 

International Astronautical Congress (IAC), Oct. 2021.
[3]  P.  Delandea,  P.-B.  Lambertb,  M.  Bouayadc,  M.  Zaroubiand,  A.  Barone,  and  E.  Jalabert,  “AI  for  Satellite  

Anomaly  Detection:  On-Ground  Operational  Feedback  and  Development  of  On-Board  Experiments”, 
Proceedings of the 73rd International Astronautical Congress (IAC), Sept. 2022.

[4] P. L. Losco, J. Pergoli, A. De Vincenzis,  and R. Dyer, “From Theory to Practice: Operational Implementation of  
Telemetry  Outlier  Detection  at  EUMETSAT”,  Proceedings  of  the  16th  International  Conference  on  Space 
Operations, May 2021.

[5] S. Tariq, S. Lee, Y. ShinS. M. S. Lee, O. Jung, D. Chung, and S. S. Woo, “Detecting Anomalies in Space using  
Multivariate Convolutional LSTM with Mixtures of Probabilistic PCA”, Proceedings of the 25th ACM SIGKDD 
International Conference on Knowledge & Data Mining, Jul. 2019.

[6] B. Pilastre, J.-Y. Tourneret, and L. Boussouf, “Multivariate Anomaly Detection in Mixed Telemetry time-series 
Using A Sparse Decomposition”, Proceedings of the 2019 IEEE 8th International Workshop on Computational 
Advances in Multi-Sensor Adaptive Processing (CAMSAP), Dec. 2019.

[7] L. Manca, I. Bloise, A. Spörl, and K. Helmsauer, “An Innovative AI-Based Framework for On-Ground Anomaly  
Detection and Root Cause Analysis”, 17th International Conference on Space Operations, Dubai, United Arab 
Emirates, 2023, 6 - 10 March.

[8] C. O’Meara, L. Schlag, L. Faltenbacher, and M. Wickler, “ATHMoS: Automated Telemetry Health Monitoring 
System  at  GSOC  using  Outlier  Detection  and  Supervised  Machine  Learning”,  Proceedings  of  the  AIAA 
SpaceOps 2016 Conference, May 2016.

SpaceOps-2023, ID #444 Page 9 of 10

https://arxiv.org/abs/1901.03407/


17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright ©2023 by Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR). Published by the Mohammed Bin Rashid Space Centre (MBRSC) 

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

[9] L. Schlag, C. O’Meara, and M. Wickler, “Numerical Analysis of Automated Anomaly Detection Algorithms for 
Satellite Telemetry”, Proceedings of the 14th International Conference on Space Operations, May 2018.

[10] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large 
Spatial Databases with Noise”, Proceedings of the Second International Conference on Knowledge Discovery 
and Data Mining, Volume 96, No. 34, pp. 226-231, August 1996.

[11] Python, https://www.python.org/,1991, (accessed 21.01.2023).
[12] Project Jupyter, https://jupyter.org/, 2014, (accessed 21.01.2023).
[13] H.  A.  Dau,  et  al.,  “The  UCR  Time  Series  Classification  Archive”,  October  2018, 

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/ (accessed 21.01.2023).
[14] H. A. Dau, et al., “The UCR Time Series Archive”, arXiv, 2018.
[15] Computer  Science  and  Engineering  (CSE)  Department  at  the  University  of  California,  Riverside,  

https://www1.cs.ucr.edu/ (accessed 21.01.2023).
[16] Metaflow, https://metaflow.org/ (accessed: 23.01.2023).
[17] A. Del Moro, M. Dauth, T. Lesch, C. Schefels, A. Braun, V. Filip, and T. Göttfert, “A Modern Approach to  

Visualize  Structured  and  Unstructured  Space  Missions’  Data”,  17th  International  Conference  on  Space 
Operations, Dubai, United Arab Emirates, 2023, 6 - 10 March.

[18] DLR Quantumcomputing Initiative, https://qci.dlr.de/ (accessed 25.02.2023).

SpaceOps-2023, ID #444 Page 10 of 10

https://qci.dlr.de/
https://metaflow.org/
https://www1.cs.ucr.edu/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://jupyter.org/
https://www.python.org/

