DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Haptic codecs for the Tactile Internet

Steinbach, Eckehard and Li, Shu-Chen and Gülecyüz, Basak and Hassen, Rania and Hulin, Thomas and Johannsmeier, Lars and Muschter, Evelyn and Noll, Andreas and Panzirsch, Michael and Singh, Harsimran and Xu, Xiao (2021) Haptic codecs for the Tactile Internet. In: Tactile Internet with Human-in-the-Loop Academic Press. pp. 103-129. doi: 10.1016/B978-0-12-821343-8.00016-2. ISBN 978-0-12-821343-8.

Full text not available from this repository.

Official URL: https://www.sciencedirect.com/science/article/pii/B9780128213438000162


This chapter discusses the state of the art and current investigations by the authors in the field of perceptual haptic coding. The discussion covers both kinesthetic and tactile codecs, which take different types of input and target different objectives. Kinesthetic codecs are designed to reduce the number of packets to be exchanged bidirectionally during network-based physical interaction. Bilateral teleoperation of a robotic system with force feedback is an example for this. A special requirement in this context is to ensure stability and reduce data traffic despite the negative impact of delay in the bidirectional exchange of kinesthetic information. For this purpose, we marry kinesthetic data reduction schemes with stabilizing control approaches and thereby improve the trade-off between stability, transparency, and network resource usage. Tactile codecs are designed to minimize the required transmission rate during unidirectional exchange of surface interaction information. Compared to the kinesthetic codecs they are more delay-tolerant. Both types of haptic codecs share the need to incorporate mathematical models of human perception. The development of such models is a current research challenge. To this end, we describe the most widely used models of human kinesthetic and vibrotactile perception and how they can be leveraged in perceptual coding schemes. Additionally, haptic codecs need to support multiple points of interaction. This requires a hierarchical design, where spatial redundancy (e.g., on a finger, among fingers, across the hand, arm, etc.) is exploited. Finally, haptic codecs need to be learning-oriented, which means that they need to support remote learning scenarios, such as learning from (remote) demonstrations. We also describe and analyze the performance of the kinesthetic and tactile codecs under consideration within the IEEE standardization activity P1918.1.1. We present both objective and subjective evaluation results and complement the chapter with a discussion of the available objective quality measures that have been found to accurately predict human judgments of compressed haptic signals. The development of haptic codecs requires interdisciplinary expertise from psychology, signal processing, applied information theory, control, and sensor/actuator development. Haptic codecs are a key enabler for a wide range of applications, e.g., in industry or medicine.

Item URL in elib:https://elib.dlr.de/195235/
Document Type:Book Section
Title:Haptic codecs for the Tactile Internet
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Steinbach, EckehardTechnical University of Munich, Germanyhttps://orcid.org/0000-0001-8853-2703UNSPECIFIED
Li, Shu-ChenTechnische Universität Dresden, GermanyUNSPECIFIEDUNSPECIFIED
Gülecyüz, BasakTechnical University of Munich, GermanyUNSPECIFIEDUNSPECIFIED
Hassen, RaniaTechnical University of Munich, GermanyUNSPECIFIEDUNSPECIFIED
Hulin, ThomasUNSPECIFIEDhttps://orcid.org/0000-0002-3814-075XUNSPECIFIED
Johannsmeier, LarsTechnical University of Munich, GermanyUNSPECIFIEDUNSPECIFIED
Noll, AndreasTechnical University of Munich, GermanyUNSPECIFIEDUNSPECIFIED
Panzirsch, MichaelUNSPECIFIEDhttps://orcid.org/0000-0002-0647-7147UNSPECIFIED
Xu, XiaoTechnical University of Munich, GermanyUNSPECIFIEDUNSPECIFIED
Date:19 March 2021
Journal or Publication Title:Tactile Internet with Human-in-the-Loop
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In ISI Web of Science:No
Page Range:pp. 103-129
EditorsEmailEditor's ORCID iDORCID Put Code
Publisher:Academic Press
Keywords:Haptic codecs, haptic communication, haptic quality assessment, somatosensory processing
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Robotics
DLR - Research area:Raumfahrt
DLR - Program:R RO - Robotics
DLR - Research theme (Project):R - Telerobotics
Location: Oberpfaffenhofen
Institutes and Institutions:Institute of Robotics and Mechatronics (since 2013) > Analysis and Control of Advanced Robotic Systems
Deposited By: Hulin, Dr. Thomas
Deposited On:25 May 2023 12:20
Last Modified:25 May 2023 12:20

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.