elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Optimization of Multi-arm Robot Locomotion to Reduce Satellite Disturbances for In-orbit Assembly

Lutze, Jean-Pascal und Schuller, Robert und Mishra, Hrishik und Rodriguez Brena, Ismael Valentin und Roa Garzon, Máximo Alejandro (2023) Optimization of Multi-arm Robot Locomotion to Reduce Satellite Disturbances for In-orbit Assembly. In: 2023 IEEE Aerospace Conference, AERO 2023. IEEE. AeroConf 2023 IEEE Aerospace Conference, Big Sky, Montana, USA. doi: 10.1109/AERO55745.2023.10115776. ISBN 978-166549032-0. ISSN 1095-323X.

[img] PDF
7MB

Offizielle URL: https://ieeexplore.ieee.org/document/10115776

Kurzfassung

Traditionally, manufacturing and assembly of space assets is performed on ground before sending them into orbit. However, this monolithic approach involves high launch costs due to increasing asset sizes, e.g., large telescopes for space observation. Alternatively, in-orbit assembly of space structures after launching the raw materials to orbit opens wider possibilities at a reduced cost. Mobile robotics, such as walking manipulators or multi-arm robots, are a critical component for this approach due to their mobility in orbit. However, unlike terrestrial assembly tasks, the continuous motion of the robot and materials, coupled with the change of inertial properties of the structure, results in a rotational deviation of the platform due to conservation of angular momentum in orbit. This might violate the tolerance limits of the platform antennas cone angle for communication with the ground stations. Although exploiting the attitude control system of the platform is a straightforward solution, it might lead to issues related to the associated actuators like reaction wheels saturation, high-frequency vibration, or high fuel consumption. To deal with this problem, in this paper we formulate the attitude disturbance problem as a minimization of the effects created by the gait of the walking manipulator. Investigating the dynamic coupling between the robot system and the space structure gives a deeper understanding of the spacecrafts behavior depending on the robot gaits. The paper proposes a controller that optimizes the forces that the robotic arm applies to the structure, hence minimizing the base rotation. As an application, we use a space structure composed of identical elements, namely the mirrors of a segmented telescope, endowed with standard interfaces to allow the robot locomotion. We show the effects of optimizing these interaction forces in various scenarios and positions on the structure through multiple dynamic simulations.

elib-URL des Eintrags:https://elib.dlr.de/194983/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Optimization of Multi-arm Robot Locomotion to Reduce Satellite Disturbances for In-orbit Assembly
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lutze, Jean-PascalJean-Pascal.Lutze (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schuller, RobertRobert.Schuller (at) dlr.dehttps://orcid.org/0000-0001-6034-5586NICHT SPEZIFIZIERT
Mishra, Hrishikhrishik.mishra (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rodriguez Brena, Ismael ValentinIsmael.RodriguezBrena (at) dlr.dehttps://orcid.org/0000-0002-2310-9186NICHT SPEZIFIZIERT
Roa Garzon, Máximo AlejandroMaximo.Roa (at) dlr.dehttps://orcid.org/0000-0003-1708-4223NICHT SPEZIFIZIERT
Datum:15 Mai 2023
Erschienen in:2023 IEEE Aerospace Conference, AERO 2023
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/AERO55745.2023.10115776
Verlag:IEEE
ISSN:1095-323X
ISBN:978-166549032-0
Status:veröffentlicht
Stichwörter:Space, Robotic, Optimization, Angular Momentum
Veranstaltungstitel:AeroConf 2023 IEEE Aerospace Conference
Veranstaltungsort:Big Sky, Montana, USA
Veranstaltungsart:internationale Konferenz
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - On-Orbit Servicing [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Lutze, Jean-Pascal
Hinterlegt am:05 Mai 2023 09:59
Letzte Änderung:14 Nov 2023 09:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.