elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Masked Image Modeling for Representation Learning in Earth Observation

Hernandez-Hernandez, Hugo (2023) Masked Image Modeling for Representation Learning in Earth Observation. Masterarbeit, TU Munich.

[img] PDF
7MB

Kurzfassung

Deep learning applied to Earth observation (EO) yields impressive results. However, a significant challenge in EO is the rapidly increasing data volume while limited annotation resources available. Self-supervised representation learning (SSL) employs large amounts of unlabeled data. Recently, Masked Image Modelling (MIM) demonstrated scalability in model and data size. MIM masks a defined ratio of the input image for training a model to predict the masked patches. The learnt encoder is transferred to downstream tasks. In this work, we explore a new approach of MIM for EO combining two state-of-the-art SSL methodologies. One employs the Masked Autoencoder (MAE), which asymmetrically masks and reconstructs the raw input with the aid of an encoder operating on the visible patches followed by a smaller decoder reconstructing. The second methodology utilizes the Masked Feature Prediction (MFP), where image feature descriptors get reconstructed. We test our approach on the (SSL4E0-s12) dataset reconstructing Histogram Oriented Gradients (HOG). We evaluate the pre-trained model on a multi-class classification for Eurosat. Experimental results indicate stable performance with more than 90% accuracy down to 10% of labeled data. An ablation study on data normalization reveals that linear classification downstream task accuracy benefits from normalization by up to 6%. In contrast, fine tuning accuracies are robust to data normalization.

elib-URL des Eintrags:https://elib.dlr.de/194890/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Masked Image Modeling for Representation Learning in Earth Observation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hernandez-Hernandez, Hugoge79was (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2023
Referierte Publikation:Nein
Open Access:Ja
Seitenanzahl:73
Status:veröffentlicht
Stichwörter:self-supervised learning, Earth observation, image compression, artificial intelligence, deep learning, EuroSAT
Institution:TU Munich
Abteilung:TUM School of Engineering and Design
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Albrecht, Conrad M
Hinterlegt am:28 Apr 2023 10:56
Letzte Änderung:07 Jul 2023 11:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.