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Abstract

Deep learning has been widely used in the field of Earth observation (EO) and brought
impressive outcomes. However, one big challenge in EO is the contradiction between
rapidly increasing data volume and limited annotation resources. To tackle this issue
and make use of large-scale unlabeled data, self-supervised representation learning
(SSL) has been developed within the years. This methodology is focused on learning
useful representations by itself with few or without human intervention from immense
and unlabeled datasets. Various types of self-supervision have been studied, among
which recent Masked Image Modelling (MIM) has shown great potential. The principle
of MIM is masking out a defined ratio of an input image, and training a model to
predict the masked patches from visible ones. The learned encoders can then be
transferred to downstream tasks to extract good data representations.

In this thesis, we explore a new approach of MIM in EO with the combination of two
architectures presented in the state of the art: Masked Autoencoder (MAE), which masks
and reconstructs the raw input image with an asymmetrical structure to increase the
efficiency; and Masked Feature Prediction (MFP), where image feature descriptors are
seen as reconstructing targets. The proposed approach is performed on an EO dataset
for pretraining, and evaluated on a classification downstream task. Experimental results
show an optimal reconstruction of the images in multispectral domain and promising
downstream performance in scene classification.
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In memory of our ancestors, for the generations to come



"Herman Melville, in Moby Dick, spoke for wanderers in all epochs and meridians:"I’m
tormented with an everlasting itch for things remote. I love to sail forbidden seas..."

"Maybe it’s a little early. Maybe the time is not quite yet. But those other worlds-
promising untold opportunities-beckon.

Silently, they orbit the Sun, waiting."

Carl Sagan, Pale Blue Dot: A Vision of the Human Future in Space



1 Introduction

1.1 Motivation

Recently, the main option to deal with image-oriented databases (Deng et al., 2009)

was using human-annotated datasets with methods like supervised learning, however,

this is costly and time-consuming. To make use of unlabeled data, self-supervised

learning has become within the years a useful tool to achieve the reduction of human

supervision in computer vision.

Earth observation presents the challenge of dealing with massive-scale datasets and

limited annotation resources, thus, self-supervised representation learning SSLhas

been introduced to address this issue (Wang et al., 2022b) (Zhu et al., 2017). The

idea is characterized by the concept of the model can learn by itself without human

intervention (LeCun et al., 2015).

1.2 Background: Self-Supervised Learning

Self-supervised learning comes from the concept of representation learning, this rep-

resentation of data make a task easier to extract useful information when building

predictors (Bengio et al., 2012) (Ericsson et al., 2022).

The idea of self-supervised learning (SSL)in computer vision comes from the necessity

of learning increasingly rich semantic features of images. This is performed by relying

on large-scale annotated datasets which require manual annotation, thus, expensive

and time-consuming tasks to be performed (Wang, 2022). The main idea behind SSL

is the capability of the model to learn by itself how to label the massive amount of

data which it is feed with. It is not necessary to perform labeling manually when the

method provide already this skill. In the computer vision process, it is necessary to

extract image features used in different output tasks. Similarly, is the case with remote

sensing where, after the features acquisition step a sort of tasks are performed such as

1



CHAPTER 1. INTRODUCTION

classi�cation, segmentation, object identi�cation, etc.

In both cases SSL has demonstrated a good performance when addressing the draw-

backs of supervised learning: poor feature generalization, vulnerability to attacks,

manually labeled data, etc. (Wang, 2022), mainly because it works with unlabeled im-

ages. While large databases leads to noisy labels which affect the model generating bias,

small ones with good quality tend to lead to over�tting (Wang et al., 2022b). Therefore,

SSL could lead to successfully address this challenges in remote sensing.

The general pipeline of SSL is divided into two phases: the pre-training task and

downstream task as it is illustrated in Figure 1.1.

Figure 1.1 Self-Supervised Learning Pipeline (Wang et al., 2022b)

1.2.1 Pre-training Task

During pre-training task, the model is trained using a dataset with similar characteristics

of the one used for the downstream task, a land-usage oriented dataset, this with the

goal to learn similar characteristics for the labels during the classi�cation task. This

stage uses a speci�c model and architecture which their main task is to extract image

features. As it can be seen in Figure 1.1, a model is feed with a set of unlabeled data x,

then it is processed by the model which generates as an output a visual representation

learned through self-supervision later to be used in the next stage.

In the current work, an Earth oriented dataset is used as a pretext task for pre-training:

self-supervised learning for Earth Observation SSL4EO-s12(Wang et al., 2022c), which

2



1.2. BACKGROUND: SELF-SUPERVISED LEARNING

relies on spaceborne imagery acquired by Sentinel 1/2 missions.

1.2.2 Downstream task

During the downstream task, the process transfers what does the model has learned to

a smaller dataset with similar characteristics with the one it was pre-trained, usually,

specialized architectures are used to extract image features to be transferred. These

architectures could be convolutional neural networks (Lecun et al., 1998), (LeCun et al.,

1989) or vision transformers (Dosovitskiy et al., 2020), then an evaluation of the transfer

learning task is performed. In remote sensing the tasks are presented in a wide variety

of options such as classi�cation or segmentation, in the present work we perform a

classi�cation task.

1.2.3 Categorization of Self-Supervised Learning

Self-supervised learning is divided into three different methods: generative, contrastive

and predictive. Generative methodologies are oriented to reconstruct or generate from

input data by teaching the model how to perform the task, contrastive methods perform

a maximization of the of the similarity between the augmented inputs, and predictive

methods allow the model to predict self-generated labels (Wang et al., 2022b).

Figure 1.2 Categorization of self-supervised learning (Wang et al., 2022b)

3



CHAPTER 1. INTRODUCTION

Generative Methods

In the present work we focus on generative methods, which are focused on learning

representations by reconstruction from the input data. They train an encoder to

encode input x into an explicit vector z, and a decoder to reconstruct x from z (Liu

et al., 2020), they are divided into two categories: autoencoders (AE) and generative

adversarial networks (GAN). For AE models, the objective is to reconstruct inputs from

corrupted inputs, while for GAN, the training process is divided into two parts, where

one generates fake samples while the other one tries to distinguish them from real

ones.

One of the backbones of this thesis are the autoencoders which were �rst de�ned

in (Ballard, 1987) as part of the work on modular learning networks. They are de�ned

as a group of hierarchies that have a compact encoding of input-output pairs to

take advantage of the backpropagation algorithm. Autoencoders are oriented to

dimensionality reduction and their traditional architecture is set as a feed-forward

neural network which has as a goal to produce its input as the output layer (Liu et al.,

2020). They train a de�ned encoder E to map input x to a latent vector z = E(x), and

a decoder D to reconstruct x = D(z) from z. In this context a joint function D � E is

speci�ed to contribute to a self-supervised loss:

kx � D(E(x)) k (1.1)

As the encoder-decoder structure may lead into trivial solutions such as E = D = 1, it

may be necessary to apply strategies to prevent trivialities. In the case of the Autoen-

coders, the dimensionality reduction is usually used (Wang et al., 2022b) regarding

its application, constraining a small dimension z is not a must to prevent identity

mapping. It is also an option to construct D � E such the dimension of z is greater

that the input's x dimension with additional sparsity constrains, this gives its name as

sparse autoencoder.

A basic structure of an autoencoder can be visualized in Fig. 1.3, it is a densely

connected neural network with two parts, one working as an encoder and the second

towards the output as a decoder. The AE architecture used in the present work involves

a bigger complexity but shares the same principles.

4



1.2. BACKGROUND: SELF-SUPERVISED LEARNING

Figure 1.3 Basic Autoencoder Architecture

1.2.4 Self-Supervised Learning and Supervised Learning

Self-supervised learning and supervised learning share characteristics in common as

well as differences, in Table 1.1 we present their characteristics. It is worth to mention

that, the main difference is that SSL works with unlabeled data while supervised

learning with labeled-data.
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CHAPTER 1. INTRODUCTION

Table 1.1 Comparison SSL & SL.

Feature Supervised Learning Self-supervised Learning

Methodology

• Learn from an already

labeled dataset

• Initializes from the

transfer task

• Uses an unlabeled

dataset, then learn the

labels by itself

• Divided in two phases:

pre-training task and

downstream task

• Initialize the weights

from the pre-training

phase, e.g. using �ne-

tuning

Usage of labels

• Requires hand-crafted

labels to work

• Generates its own la-

bels during pre-training

phase

Complexity

• Straightforward, as-

sumes labels of each

given image

• Requires two phases:

pre-training and down-

stream task

• Requires two datasets

• Large-scale dataset

Continued on next page

6



1.3. BACKGROUND: MASKED IMAGE MODELLING

Table 1.1 – continued from previous page

Feature Supervised Learning Self-supervised Learning

Versatility

• Eases up the process of

learning, but limited to

annotated datasets

• Although complex, ver-

satile for any kind of

data

• Different taxonomies

make it adaptable

for different kinds of

outputs

• Necessary to pre-train

with similar dataset

Performance

• Poor performance for

small datasets

• Costly and regular per-

formance for large-scale

datasets

• Very good performance

for large-scale datasets

Table 1.1 explores the similarities and differences with respect concepts that may help

to understand better the behavior and performance of the methodologies used.

1.3 Background: Masked Image Modelling

1.3.1 Masked Image Modelling in SSL

For the general structure of the algorithm we use Masked Image Modelling MIM (Xie

et al., 2021) which belongs to generative SSL. MIM concept is simple: a task that

learns how to create, within this structure the models are trained to predict further

information similar to the one it was trained, so it provides a good opportunity to be

applied in the �eld of remote sensing. Masked Autoencoders MAE (He et al., 2021)

as well as Masked Feature PredictorsMFP (Wei et al., 2021) are part of MIM. One of

the most important parts of this architecture is the encoder which maps the observed

signal to a latent representation to later be decoded (He et al., 2021), however, this

7



CHAPTER 1. INTRODUCTION

encoder requires a structure to work. Usually, while working with images CNNs are

used but recent studies have demonstrated the performance of different structures that

provides satisfactory results. Vision transformers (Dosovitskiy et al., 2020) have been

recently included for image processing tasks, where basically the image is split into

patches treated as tokens then it is processed by the structure. This architecture had

already provided very good results for image recognition in classi�cation, thus, its

usage in remote sensing oriented to Earth observation provides a good opportunity to

be explored.

1.3.2 Masked Image Modelling in EO

While many of this techniques and architectures have been already explored, they have

been oriented to ordinary tasks or just intended to demonstrate its performance for

explanatory purposes. However, a complete study in remote sensing oriented to Earth

observation is novel and has potential to provide promising results. The present study

takes masked image modelling architectures (MAE and MFP) with vision transformers

as their backbone to perform a study oriented to multispectral images by creating

a hybrid capable to provide a better framework for image classi�cation in remote

sensing with the help of self-supervised learning (Wang et al., 2022b). As a MIM study

includes the performance of pre-training on a Earth observation oriented unlabeled

dataset (Wang et al., 2022c) using self-supervised pre-training, therefore, performs a

transfer learning classi�cation (Zhuang et al., 2019) on the Eurosat dataset (Helber et al.,

2019), (Helber et al., 2018) which consists of ten different classes describing the land

usage.

Thus, the current study modi�es the traditional view on pixelwise images in the RGB

spectrum to a multispectral spectrum which provides a better approach about the

characteristics of the land. Moreover, with the help of feature descriptors such as HOG,

it improves the performance of the classi�cation output.

1.4 Thesis overview

The present work proposes a hybrid architecture for the pre-training of multispectral

images from Earth observation data provided by Sentinel-2 mission by means of SSL,

the architecture is based on MAE with HOG as feature prediction targets. The work

can be addressed as follows:

8



1.4. THESIS OVERVIEW

• We use two datasets for the self-supervised learning analysis, SSL4EO-s12 (Wang

et al., 2022c) during the self-supervised pre-trainingphase and EuroSat (Helber et al.,

2019), (Helber et al., 2018) for thedownstream task.

• The data used is multi-spectral imageryobtained by the mission Sentinel-2, we use

the 13 bands for the classi�cation task.

• We implement a hybrid architecture based on masked autoencoders(He et al., 2021)

and masked feature predictors(Wei et al., 2021) which work at their encoder with

vision transformers(Dosovitskiy et al., 2020) and follow the masked image modelling

strategy for image prediction.

• We perform a classi�cation task over 10 different classes on the EuroSat imagery

and we evaluate it in terms of accuracy and a confusion matrix.

The thesis is structured as follows:

• In Chapter 1 we address the motivation and background concepts for our masked

image modelling architecture oriented to Earth observation.

• In Chapter 2 we structure a literature review about similar and baseline works

for the ideas presented in this work, structured in terms of the main concepts and

architectures used for the proposed model.

• In Chapter 3 we describe the proposed hybrid MAE+MFP methodology for

self-supervised representation learning in Earth observation.

• In Chapter 4 we present the experimental setup and possible ablation studies.

• In Chapter 5 we show the results and their posterior analysis.

• In Chapter 6 we set our conclusions and outlooks.

9





2 Related work

2.1 Self-supervised Learning

2.1.1 Self-supervised Learning in computer vision

Self-supervised learning is the backbone of the present thesis work, by means of

this strategy we are capable to generate a reconstruction of images and perform a

classi�cation of a dataset. To get with the current developments, some studies have

invest their efforts in understanding how does SSL works in computer vision.

As a preamble, ImageNet (Russakovsky et al., 2014) starts a new chapter in the research

�eld by providing a large scale visual recognition challenge. The database is linked with

several studies to deal with the classi�cation and recognition of the objects, therefore, it

serves as a tool for the developed of strategies and models in computer vision. From

these baselines, some researches come with new ideas to improve the tasks and focus

on new strategies that have helped to computer vision works. Doersch (Doersch et al.,

2015), explores the use of spatial context for image context prediction task, a relevant

feature for our land-use classi�cation task. Additionally, they use an unsupervised

visual representation learning strategy which can be compared to self-supervised

learning.

After some years of research in deep learning, new studies have come with a clearer

panorama of self-supervised learning applied to images. Goyal (Goyal et al., 2019) aims

to learn representations independently and using a massive-scale dataset for its training,

a relevant characteristic addressed in our work. Additionally, the research provide

an extensive benchmark using different datasets and tasks providing an additional

quality necessary for this thesis: the variety in its performance. Caron (Caron et al.,

2019) study also aims to a massive-scale dataset, their approach focuses in raw data

with unsupervised methods using convolutional neural networks. By training on 96 M

of images the study validates the potential of unsupervised learning, a similar idea is

developed in our work. Another novel research in representation learning that achieved

11



CHAPTER 2. RELATED WORK

notable results using self-supervised learning is (Misra and Maaten, 2019). Its main

contribution is the invariance of images under semantic representations improving their

semantic quality and outperforming traditional supervised learning methodologies.

Momentum Contrastive learning MoCo(He et al., 2019) enhances the use of encoders

for self-supervised learning in computer vision. Since our work uses autoencoders

this study takes relevance and represents a milestone in the present research �eld of

computer vision.

More recently, new approaches have came to light, such is the case ofSimCLR(Chen

et al., 2020b). In this study, it is re�ned the idea of contrastive self-supervised learning,

therefore, new �ndings and improvements over previous methods are achieved. This

research points that self-supervised learning remains still undervalued, so it encourages

new works, such as the present thesis, to explore new strategies and make relevant SSL.

In a context oriented to the downstream tasks, Bootstrap Your Own Latent(Grill et al.,

2020) presents an interesting approach to self-supervised image representation learning

where the algorithm utilizes the output of a network as a target for an enhanced

representation. It generates a more robust model in comparison with the contrastive

methods available in the literature. Finally, Goyal (Goyal et al., 2021) presents the

premise of self-supervised learning that it can learn from any random image and from

any unbounted dataset. The main contribution and its relation with our work is that

self-supervised learning works in a real world setting, this is an important characteristic

to the present work which deals with spaceborne imagery.

2.1.2 Self-supervised learning for remote sensing

One of the main baselines of this thesis work is remote sensing. Since self-supervised

learning is a tool to achieve the goals and address the motivations of the current thesis,

is also important to mention what is the role of remote sensing using tools from deep

learning that helps to understand better the behavior of the Earth surface in the �eld of

Earth observation studies.

An extensive study relating deep learning and remote sensing in various ways is

presented in (Zhu et al., 2017). The paper questions if it is suitable to use these tools as

presented in deep learning and more oriented to this work self-supervised learning, as

a key to resolve all the tasks and challenges presented in remote sensing. Zhu et, al.

also provides an extensive analysis about how deep learning with all its variations is

oriented to achieve mainly Earth oriented remote sensing analysis. They perform the

12



2.1. SELF-SUPERVISED LEARNING

analysis by presenting lists of resources for its application an easy usage to get with

relevant results. Moreover, studies address the importance of remote sensing outputs

which are relevant for the current study, such as image classi�cation. One of these

studies perform an image classi�cation relying in ImageNET with Deep Convolutional

Neural Networks (Krizhevsky et al., 2017), where a relatively big dataset with several

classes is trained to achieve relevant results in the �eld of deep learning oriented to

remote sensing applications. Although, the study performs with "normal" images

not related with the current study, it performs a classi�cation task with prominent

results which are relevant for later studies oriented to a more remote sensing oriented

researches.

In this concern, some efforts have been made to create a milestone in the analysis of

remote sensing with deep learning with relevant results for a wide �eld of applications

specially oriented to satellite acquired imagery. A scene classi�cation task in (Zhao

et al., 2020) uses Convolutional Neural Networks to perform scene identi�cation and

classi�cation tasks with images obtained by satellite, being capable to identify scenery

like a golf course, an air�eld, sea ice or a river in the RGB domain. The study achieves

high accuracies for the classi�cation task, while other studies focuses their efforts

in other aspects of the remote sensing sciences e.g. using SAR for the acquisition

of data but processing it by means of deep learning. One SAR study is performed

in (Zhang et al., 2019) where a variation in how do the images should be treated to

perform a better training and demonstrate its effectiveness, adding one more study

to the literature about feature learning with satellite images, relevant for the current

thesis. Another effort in remote sensing is an study oriented to semantic segmentation

as a �nal output and task using SSL techniques (Singh et al., 2018). In this research the

authors achieve an improvement over training from scratch by proposing architectural

changes in the traditional structure. Finally, in a novel study (Tao et al., 2020) a new

architecture for self-supervised learning is proposed to deal with the scene classi�cation

for multispectral imagery. One of the authors' motivations is to have a better approach

to multispectral and hyperspectral data because they usually have a different imaging

mechanism from the widely used RGB images, providing a new opportunity to develop

more studies with these type of data, widely common in remote sensing.

13
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2.2 Masked Image Modelling

Masked Image Modelling forms part of self-supervised learning and it is the focus

of the present thesis. It has been a recently explored strategy to predict and generate

images from a given input and various works have focused their efforts to get relevant

results by studying its performance in diverse environments and frameworks. However,

in remote sensing they are still several aspects to be explored. The main idea is masking

a given input and predict the masked patches of the images. Hence, the researches

goes from the percentage and the form of the patches to the integration with learning

methodologies and architectures such as self-supervised learning.

2.2.1 Framework studies on Masked Image Modelling

A clear, simple yet extensive approach regarding MIM was performed by Xie et.

al. (Xie et al., 2021). In this study is presented a framework with several variations in

masking strategies to achieve one common goal: how to learn good representations.

The presented architecture also deals with the existence of en encoder composed by

architectures like ViT or Swin transformers (Liu et al., 2021), but the main contribution

relies in how the masking strategies are varied in different ways while keeping the

masking ratio as a constant. Other frameworks take as a baseline the success of

masking strategies on other �elds e.g. masked language modelling, and replicate the

methodology in the visual spectrum by the usage of an online tokenizer(Zhou et al.,

2021). This study perform a self-distillation on masked patch tokens and take the

teacher network as the online tokenizer to acquire visual semantics. The tokenizer

addresses a variation in the main idea on how masked modelling works and achieves

reasonable accuracies with a more robust model. Moreover, the study also uses vision

transformers in its main architecture, an essential architecture used in our thesis.

One of the baselines for MIM is a previously research in context-based pixel prediction

study (Pathak et al., 2016), the authors present by the use of Context Encoders a

feature learning tool. Although, they used a CNN for the training of the model, the

results demonstrate a good prediction and reconstruction of the masked patch of the

original image. Moreover, the contributions also point classi�cation, detection, and

segmentation tasks. Additionally, studies indirectly contributing to MIM have been

performed showing good results (Chen et al., 2020a), the generative pretraining from

pixels relies on a sequence transformer to auto-regressively predict pixels without

incorporating knowledge of the 2D input image. Hence, it serves as a strategy to be
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considered by the masking strategies presented in our work.

Another approaches goes more than predicting missing patches, the strategy follows

other direction yet relevant in masked modelling. Henaff et. al. (Hénaff et al., 2019)

predict patches using a veri�cation task by means of Contrastive Predictive Coding

(CPC), where the predicted images are evaluated using a contrastive loss and enhances

the model to correctly classify future representations among non-"correct" represen-

tations. At the same time Sel�e (Trinh et al., 2019) (self-supervised image embedding)

takes CPC to teach a model how to learn to select the correct patch among other

"distractor" patches in a similar way to Henaff's model, relying on ImageNet and

CIFAR-10 datasets to achieve their results. The motivation and objectives are relevant

to our pipeline and provide several ideas to be analyzed when performing MIM in

the studies. Nevertheless, most of the modelling strategies lacks of a remote sensing

context missing important issues to be addressed in this �eld.

2.2.2 Masked Image Modelling for remote sensing

In the �eld of remote sensing, masked image modelling is still an approach to be

explored. There are many open issues that have not been addressed and few researched

have been done orientating their efforts to a narrow spectrum of the �eld. However,

these investigations provides interesting ideas and results on how these modelling

strategies perform when more complex images are masked. Moreover, they represent

important reference points for later studies including the present one in this thesis

work.

A hyperspectral image classi�cation performed by Guan and Lam (Guan and Lam,

2022) involves the MIM strategy within a remote sensing analysis by a cross-domain

contrastive learning framework oriented to learn image representations with these

characteristics across the spectral and spatial domains. Their main output is the signal

representation in these two domains to achieve high accuracies at the classi�cation per-

formance. Nevertheless, one challenge this study presents relies in the time consuming

task solver due to the abundance of unlabeled samples. Most recently, Wang (Wang et

al., 2022a) proposed a new approach for remote sensing using masked image modelling

by proposing a global semantic integrated self-distilled complementary MIM where

their main goal is to address the information loss by generating two complementary

masked views for the same image. Thus, with the help of an auxiliary network pipeline

they extract global semantic information from the images and transfer to MIM by
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self-distillation. Their approach provides a new baseline to be taken into consideration

for future developments.

There are few studies relating MIM and remote sensing, hence, it is necessary to deep

into more studies considering the bene�ts of masked images for SSL in the �eld of

remote sensing. Month by month new studies come with new approaches and results

contributing to the state of the art.

Finally, a complete setup of models, strategies and methodologies have been addressed

independently and within the years to tackle the challenges in deep learning and

remote sensing. Step by step, researchers combine different ideas to solve more speci�c

problems, get better results and improve the application on complex tasks such as

remote sensing. In the present study, we address one of the challenges in remote

sensing which is the usage of features prediction with a framework of several strategies

which had worked ef�ciently in past approaches. Thus, we expect new knowledge of

the architectures and models' behavior with a remote sensing baseline to be added to

the state of the art.
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3 Methodology

3.1 Masked Image Modelling pre-training

The concept of masked image modelling comes from masked signal modeling, their task

is to learn how to mask a portion of input signals and trying to predict these masked

signals (Xie et al., 2021). Recently this idea has been explored going from language

processing to image processing in computer vision, using the same methodology with

SSL, although not without dif�culties to get relevant results.

The concept of masked image modelling (MIM) is to learn representations by masking

a portion of the input image signals and perform a prediction of the original input at

the masked area. One generic architecture is described by the model SimMIM (Xie

et al., 2021), which provides a clear structure oriented to image reconstruction. Their

framework consists of 4 major components:

1. Masking strategy. It is developed on the input image, its task is to get with the

area to mask in the most ef�cient way (also depends on the architecture used in

the model). The input image after the masking will be used as the input to the

encoders.

2. Encoder architecture. At this stage it depends on the structure or architecture

used by the model, as a baseline, the encoder is relevant because it extracts a

latent feature representation for the masked image, later to be used to predict the

masked patches from the image. The output of the encoder will depend on the

general architecture of the model.

3. Prediction head. It deals with the encoder output, its goal is to accomplish the

prediction target, its structure and complexity will depend on how is de�ned the

structure in the model it is used. In some architectures a decoder is used as the

prediction head but the complexity is bigger.

4. Prediction target. At this �nal component it is decided the form of the original
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signals to predict. Depending on the application could be the raw input values or

a transformation of this values, in the case of SimMIM raw pixel values are used

as an example, but feature representations can be used in the framework. At this

stage it is also de�ned the output loss type.

Masked Image Modelling is open to several modi�cations that can improve its perfor-

mance or may be oriented for speci�c tasks, there are many developed architectures

in the literature but for the present project two of them result relevant for the study

and its goals: masked autoencoders (MAE)(He et al., 2021) andmasked feature prediction

(MFP) (Wei et al., 2021).

3.1.1 Masked Autoencoders

Oriented to computer vision tasks and designed as self-supervised learners, masked

autoencoders are one of the core architectures for the present project. They take the idea

of MIM by randomly masking out patches from an input image and reconstruct the

missing pixels. Its structure is based on the encoder-decoder �owchart but with a novel

modi�cation: an asymmetrical architecture, where the encoder operates on the visible

patches and the lightweight decoder reconstructs the original image from the latent

representation and mask tokens. Since they usevision transformers (ViT)(Dosovitskiy

et al., 2020) architecture in the encoder as well as implementing its idea (Fig. 3.1) to

divide into patches while masking some of them out.

Figure 3.1 Masked Autoencoders architecture (He et al., 2021)

MAE architecture is an encoding approach that reconstructs the original signal given
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its partial observation. This approach has an asymmetric encoder-decoder structure

where the encoder maps the observed signal to a latent representation, and the decoder

reconstructs the original signal from that latent representation. Due to its asymmetric

nature, allows the model to improve their performance by setting the encoder to operate

partially on the observed signal (He et al., 2021). The �owchart is divided into 5 steps

to provide a better picture about the approach:

1. Masking. As it is presented in the masking approach of MIM as well as the

patching division for ViT, the architecture takes these two ideas to generate a new

masking approach. The image is divided into regular non-overlapping patches

which are then sampled in a subset, then a mask removes the remaining ones. The

idea goes as follows: the approach samples random patches without replacement,

following uniform distribution.

2. MAE encoder. The encoder is a ViT applied on visible, unmasked patches,

therefore, it embeds the patches by a linear projection with added positional

embeddings, then it process the resulting set via series of transformer blocks.

Depending on the masking percentage of the image, the encoder operates only

on a small subset, not in the whole image, thus, for example given a mask of

75%, the subset sample will be 25% allowing the encoder to be very large with a

fraction of memory.

3. MAE decoder. The output of the encoder is the input of the decoder plus the

masked tokens, here each mask token is a shared and learned vector that indicates

the presence of a missing patch to be predicted. The approach in (He et al., 2021)

add positional embeddings to the tokens in the full set in order to have the

panorama of their location in the image. Additionally, in this architecture, the

decoder has another series of transformers blocks. For the SSL methodology, it

is only used during the pre-training phase to perform the reconstruction of the

image, this means, the decoder can be independent of the encoder design.

4. Reconstruction target. In MAE the reconstruction approach is oriented to recon-

struct the input raw pixels for each masked patch. At the end of the architecture,

in the decoder output, it is generated a vector of pixel values representing a

patch, this output is reshaped to form a reconstructed image. The calculated loss

function computes the mean squared error (MSE)between the reconstruction and

the original input in the pixelwise context and it is just computed on the masked

patches.
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5. Implementation. The implementation presents a straightforward approach to

generate reconstructed images: �rst MAE generate a token for every input patch,

next it randomly masked the list of tokens and based on the masking ratio, it

removes the masked portion from the list allowing the encoder to deal with a

small subset of the image's patches. At the encoder's output the encoded patches

and the masked tokens are appended to be processed by the decoder, therefore,

the decoder process the whole list of tokens. MAE authors (He et al., 2021) call

this implementation a shuf�ing-unshuf�ing set of operations.

3.1.2 Masked Feature Prediction

Masked feature prediction (Wei et al., 2021) is a video oriented approach similar to

MAE in its masking strategy to try to predict and reconstruct a target image from

a given input. The novel concept is the prediction of features instead of raw pixels,

modifying the architectures and providing new �nding while dealing with features like

Histogram Oriented Gradients (HOG). Although, they are oriented to get a reconstruction

from video sequences, for the application of the present project, it is not relevant to deal

with this approach, however, the concept of feature predictions, attains the attention for

the MAE+MFP study.

Figure 3.2 Mask-Feat architecture (Wei et al., 2021)
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The approach performs a masked visual prediction task by randomly masking few

space-time cubes of a video, then predicts the masked ones given the non-masked

ones. The �owchart is similar to MAE's one, it tokenizes the input and predict features

from the masked area. The choice of the target feature will be de�nitive on the task.

This �owchart presented in (Wei et al., 2021) sets a video which is �rst divided into

space-time cubes which then, are projected to a sequence of tokens. The masking

out operation is performed by randomly masking out some cubes and replace them

with a mask token. The prediction is performed by taking the token sequence after

the mask token replacement, with positional embedding added, then processed by

the transformer. The output tokens are projected by the prediction by a linear layer

resulting in a feature representation of the 2D spatial patch temporally centered in each

masked cube (Wei et al., 2021).

Since the present study is not interested in analyzing a set of video cubes, parts of

this approach will be ignored, hence, the feature prediction concept is relevant for the

analysis. As it was mentioned in the MFP approach, the de�nition of the feature is

of vital importance and will be dependant on the task and the goal expected for the

project.

Histogram Oriented Gradients

As a part of representation learning, histogram oriented gradients is a feature descriptor

used in computer vision and image processing to detect objects from a given image.

The approach is based on a gradient orientation computation similar to Sobel operator,

also a feature descriptor. HOG descriptor focuses on the structure of the object and it

generates histograms using the magnitude and orientations of the gradient.

First introduced in (Dalal and Triggs, 2005), they are presented as evaluations of well-

normalized local histograms of image gradient orientations in a dense grid, based on

the idea that images can be characterized by the distribution of local intensity gradients

or edge detection. Their approach is implemented by dividing the image window

into small spatial regions called cells. For each accumulating a local 1D histogram of

gradient directions or edge orientations over the pixels of the cell, thus, the combined

histogram entries form the representation. An additional contrast normalization is done

by accumulating a measure of local histogram "energy" over a larger spatial regions

de�ned as blocks, then using the results to normalize all of the cells in the block.

The main parameters are de�ned as orientations, pixels-per-cell and cells-per-block
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which will de�ne the dimensionality of the resulting vector. The �owchart can be

divided in 4 stages (Rosebrock, 2014):

1. Normalization. A relevant step in the HOG calculation, although it is optional, in

deep learning models it can be useful to improve the performance of the models.

2. Gradient computation. The gradient computation is performed in x and y

directions by the application of a convolution operation

Gx = I � Dx and Gy = I � Dy

where I is the input image, Dx the �lter in x-direction and Dy the �lter in y

direction.

Then, the �nal gradient magnitude representation is computed:

jGj =
q

G2
x + G2

y

Finally, the orientation of the gradient for each pixel is computed.

q = arctan2(Gy, Gx) (3.1)

An important element of HOG in its structure is the bin, which is given by the

orientation and the weight added to the given bin is based on the magnitude.

3. Weighted votes in each cell. The image is divided into cells and blocks, the cell is

a rectangular region de�ned by the number of pixels in each cell. For each cell in

the image, the number of orientations is de�ned because it controls the number

of bins in the resulting histogram. The gradient angle range goes from 0 to 180

in an unsigned scope, this is because unsigned orientations perform better with

the applications where HOG are used. Therefore, the gradient magnitude at each

given pixel de�ne the weight.

4. Contrast normalization A local normalization is applied to deal with illumination

and contrast, the operation groups the cells together into larger blocks which

overlap each other, the units after this operation are cells. Figure 3.3 shows the

overlapping operation, grouping cells into overlapping blocks.
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Figure 3.3 HOG generation of blocks (Rosebrock, 2014)

For each cell in the block the corresponding gradient histograms are concatenated,

then a normalization L1 or L2 is applied. Finally after the blocks are normalized,

the resulting histograms are concatenated representing the �nal vector.

3.1.3 MAE + MFP, a hybrid architecture

The novel methodology presented in this project, involves several architectures, models

and representations to get with new �ndings and knowledge about the performance of

this architecture while dealing with Earth observation oriented imagery. Therefore, the

usage of a process such as SSL within ViT transformers as the core architecture in the

model using HOG as representations for the target images to extract information and

make predictions, leads to the de�nition of a model which can generate a framework

to reconstruct images from masked inputs using representation learning.

Using masked image modelling (Xie et al., 2021) as the baseline for the architecture

model to extrapolate it to an asymmetric encoder-decoder architecture (He et al., 2021)

which has as a target a feature (Wei et al., 2021), is the main framework (a hybrid

architecture) of this work. Additionally, it is evaluated by the main methodology using

self-supervised learning.
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MAE + MFP with HOG

The core architecture of the present project is a combination of MAE and MFP architec-

tures to generate a new approach: the prediction and reconstruction of masked patches

from a visible input image to get with a reconstructed feature represented image using

HOG. This is performed with the goal of acquire new knowledge and �nding about its

performance using SSL with two Earth oriented datasets.

Figure 3.4 MAE+MFP architecture

The �owchart is the same as the used in MAE architecture but implementing the feature

prediction concept from the MFP architecture.

1. Masking. Similar to MAE and MFP an input visual image is masked out accord-

ingly to a masking ratio, the percentage is de�ned to be processed by the encoder.

Thus, usual rates of approximately 70% of the masked input are used, as the ViT

small subset is used, the input image will be divided into speci�ed measures for

the patches:

• The ViT patch size is set for 16 pixels, as de�ned in (Dosovitskiy et al., 2020)

• The grid size for each input image is set for 14 � 14 patches

Therefore, only the small subset of patches is taken into the encoder.

2. Encoder architecture Similar to MAE architecture, a vision transformer composes

the encoder and encode the visible patches following an algorithm de�ned in the

code. However, here the computation is oriented to HOG feature representations,

thus, the encoder generates new token representations in the form of feature

oriented encoded tokens.
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3. Decoder architecture. At the input of the decoder, the feature oriented tokens and

the masked tokens are appended together and introduced into the lightweight

decoder, here a positional embedding is added such as in MAE's approach and a

loss function is calculated from the reconstruction.

4. Reconstruction target. The �nal output is a reconstructed image composed by a

vector of HOG feature values represented in each patch and, as a whole, the �nal

reconstruction of the feature representation.

This architecture is the used in the complete analysis by means of self-supervised

learning.

3.2 Downstream transfer learning

The downstream task may be performed by several ways to get the accuracy of the

model, usually, they variate between them by how the trained model from the pre-

training phase is treated. The performance evaluation by quantitative means may be

executed by two different methods using the output from pre-training, either by linear

classi�cation or �ne-tuning. Thus, with an ablation study it can be obtained a deeper

understanding of the behavior of the model and the methodology.

3.2.1 Linear Classi�cation

To explain linear classi�cation or linear probing, it is necessary to consider the common

scenario in deep learning in which the goal is the classi�cation of the input data X

to produce an output distribution over D classes. The last layer of the model is a

densely-connected map to D values followed by a softmax function, then it is trained by

the minimization of cross-entropy (Alain and Bengio, 2016). At every layer the features

Hk are taken from that super�cial layer and perform a prediction of the correct labels y

using linear classi�er.

By the using of this layer, the encoder is freezed up and only the linear layer is trained,

this evaluation measures how linearly separable the embeddings produced by the

pre-trained model are (Wang et al., 2022b).
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3.2.2 Fine-tuning

During �ne-tuning evaluation, the layers of the model are unfreezed, therefore, all the

parameters of the pre-trained model are initialized, ready to be used during the stage.

Usually, in massive-scale datasets the results tend to be better in terms of accuracy (Yu,

2016).

3.3 Model backbones: Vision Transformers (ViT)

In order to understand vision transformers it is necessary to get the idea about what a

transformer is, and the core idea of a transformer is the Attention (Vaswani et al., 2017).

The transformer is a model architecture which avoids the usage of recurrence in the

neural networks (Canziani et al., 2016), and instead, relies on an attention mechanism

to draw global dependencies between input and output (Vaswani et al., 2017). One

of the advantages is that it allows an improvement in parallelization, thus, less costly

computationally speaking.

The core architecture used in the present work is the Vision Transformers architecture,

instead of relying on CNNs it explores the application of the Transformer's structure

to sequences of images patches to solve tasks such as classi�cation (Dosovitskiy et al.,

2020).

For transformers applied to image, the method split an image into patches and provide

the sequence of linear embeddings of them as an input to a transformer. Then, image

patches are treated as the same way as tokens (words) in a Natural Language Processing

(NLP) application. Since the results in (Dosovitskiy et al., 2020) provides already

a picture of its behavior, on small-scale datasets ViT provide a poor performance

compared to CNNs. However, for large-scale datasets the picture shows a different

approach, they achieve a good performance when pre-trained at suf�cient scale and

transferred to tasks with fewer data points.

The designed architecture receives as input a 1D sequence of token embeddings. To be

able to process 2D images, where CNN perform it in a straightforward way, the image

is reshaped as follows:

x 2 R H � W� C ! xp 2 R N � (P2�C) (3.2)

As the equation 3.2 describes, the image is reshaped into a sequence of �attened
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Figure 3.5 Vision Transformer, model overview (Dosovitskiy et al., 2020)

2D patches, where (H,W) is the resolution of the original image, C is the number

of channels, (P, P) is the resolution of each image patch, and N = HW/ P2 is the

resulting number of patches. The transformer uses constant latent vector size D

through all of its layers, so patches are �attened and mapped to D dimensions with a

trainable linear projection. The model refer as output of this projection as the patch

embeddings (Dosovitskiy et al., 2020).

z0 = [ xclass; x1
pE; x2

pE; ...;xN
p E] + Epos, E 2 R (P2�C)� D , Epos 2 R (N+ 1)� D (3.3)

Therefore, a learnable embedding is applied to the sequence of embedded patches

(z0
0 = xclass), whose state at the output of the transformer encoder (z0

L) serves as the

image representation y. During pre-training and �ne-tuning, a classi�cation head is

attached to z0
L. The classi�cation head is implemented by a Multi-Layer Perceptron

with one hidden layer at pre-training phase and by a single linear layer for �ne-tuning

in the downstream task phase (Dosovitskiy et al., 2020).

To retain positional information and avoid losing the distribution logic in the 2D

image, 1D positional embeddings are added to patch embeddings, thus, the output

vectors serves as input to the encoder. The transformer encoder consist of alternating

multi-head self-attention and MLP blocks within its respective layer normalization and

residual connections.

y = LN (z0
L) (3.4)
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4 Experiments

During the experiments phase the complete process of SSL was performed to get new

�ndings and knowledge about how does histogram oriented gradients (HOG) behave

as a target to pretrain models on EO data. Therefore, test their performance with a

classi�cation task employing a database with similarities during the transfer task.

4.1 Earth Observation Datasets

4.1.1 SSL4EO-s12

As self-supervised learning methodology requires in its �rst step a massive-scale

unannotated dataset it is necessary to provide the process with one that satis�ed

this characteristic, such is the case of Self-Supervised Learning for Earth Observation-

Sentinel 1/2 (Wang et al., 2022c) database.

SSL4EO-S12 (Wang et al., 2022c), provides a suitable scenario for the self-supervised

pre-training stage. One of its prominent characteristics relies in its large-scale oriented

satellite imagery quality, providing one of the basic requirements for a spaceborne

imagery analysis. Then, it also has the property of be a global coverage dataset

allowing a complete analysis of different locations around the world with a multi-

temporal and multi-sensor feature based on Sentinel 2 (1C and 1A)levels and Sentinel 1

SAR feature (Phiri et al., 2020). In the present project, we use the following features

from this dataset:

• 3 million Sentinel-2 (multi-spectral, level-1C and level-2A) and Sentinel-1 (SAR)

images

• Images are from 250K locations sampled around the globe

• The patch scale is 264x264 pixels

• As we use multi-spectral images, they are distributed over 13 bands
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• At each location, 4 images are obtained from four annual seasons separated by 3

months to get seasonal variation over the year

4.1.2 EuroSAT

Regarding the transfer learning phase, EuroSAT dataset is used as the main subject of

study. The main reason of the creation of EuroSAT (Helber et al., 2019), (Helber et al.,

2018) is the addressing of the challenge of land-use and land-cover classi�cation using

Sentinel-2 imagery. The dataset is curated for its usage on 13 spectral bands divided into

10 different classes with approximately 27'000 labeled and georeferenced images. The

main motivation, is the application of several domains with satellite imagery resources

such as agriculture, climate change, urban development, environmental monitoring,

etc., and as (Helber et al., 2019) cites. In order to use such capabilities it is necessary to

process and transform images into a structured semantics.

Figure 4.1 Eurosat sample image patches (Helber et al., 2019)

An overview of the images used for this dataset is oriented to 10 different classes

released in sample image patches of 64x64 pixels, each class consists of between 2000

and 3000 images surrounding between 10 m and 60 m of spatial resolution. A panorama

of the studied classes is presented in Figure 4.1, while a general picture of the used

bands is presented in Table 4.1. Is worth to mention that the bands and resolution in

the following table also holds for SSL4EO-s12 dataset.
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Table 4.1 Sentinel 2 Multispectral Imagery (Helber et al., 2019)

Band Spatial resolution m Central wavelength mm

B01 - Aerosols 60 443

B02 - Blue 10 490

B03 - Green 10 560

B04 - Red 10 665

B05 - Red edge 1 20 705

B06 - Red edge 2 20 740

B07 - Red edge 3 20 783

B08 - NIR 10 842

B08A - Red edge 4 20 865

B09 - Water vapor 60 945

B10 - Cirrus 60 1375

B11 - SWIR 1 20 1610

B12 - SWIR 2 20 2190

4.2 Self-supervised pretraining

As was mentioned in Chapter 3, self-supervised learning is mainly divided into two

phases: pre-training and transfer learning tasks. For the experimental phase we

performed self-supervised pre-training with our hybrid (MAE+MFP) architecture, then

we transferred for the classi�cation task partially this architecture to the EuroSat

dataset.

During self-supervised pre-training, a modi�cation of the codes presented at masked

autoencoders study (He et al., 2021) was carried out. Then, in a similar manner we took

the HOG development in masked feature prediction study (Wei et al., 2021) modifying

it in accordance to the necessities ofMAE+MFP model.

4.2.1 Data preparation

The evaluation is performed on the Sentinel 2-c multi-spectral images which are then

pre-processed before start the pre-training process, the preprocessing is performed by

the normalization of the data, this with the goal of improving the performance and

stability of the model (Google, 2022). The normalization is carried out by computing

the mean and standard deviation of each of the 13 bands in the dataset, moreover, a
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