Grabe, Cornelia and Jäckel, Florian and Khurana, Parv and Dwight, Richard (2023) Data-driven augmentation of a RANS turbulence model for transonic flow prediction. International Journal of Numerical Methods for Heat and Fluid Flow, 33 (4), pp. 1544-1561. Emerald Group Publishing Ltd.. doi: 10.1108/HFF-08-2022-0488. ISSN 0961-5539.
![]() |
PDF
- Postprint version (accepted manuscript)
504kB |
Official URL: https://www.emerald.com/insight/0961-5539.htm
Abstract
Purpose This paper aims to improve Reynolds-averaged Navier Stokes (RANS) turbulence models using a data-driven approach based on machine learning (ML). A special focus is put on determining the optimal input features used for the ML model. Design/methodology/approach The field inversion and machine learning (FIML) approach is applied to the negative Spalart-Allmaras turbulence model for transonic flows over an airfoil where shock-induced separation occurs. Findings Optimal input features and an ML model are developed, which improve the existing negative Spalart-Allmaras turbulence model with respect to shock-induced flow separation. Originality/value A comprehensive workflow is demonstrated that yields insights on which input features and which ML model should be used in the context of the FIML approach
Item URL in elib: | https://elib.dlr.de/194686/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Data-driven augmentation of a RANS turbulence model for transonic flow prediction | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 17 April 2023 | ||||||||||||||||||||
Journal or Publication Title: | International Journal of Numerical Methods for Heat and Fluid Flow | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 33 | ||||||||||||||||||||
DOI: | 10.1108/HFF-08-2022-0488 | ||||||||||||||||||||
Page Range: | pp. 1544-1561 | ||||||||||||||||||||
Editors: |
| ||||||||||||||||||||
Publisher: | Emerald Group Publishing Ltd. | ||||||||||||||||||||
ISSN: | 0961-5539 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | RANS, data-driven turbulence modeling, machine learning, feature selection, flow separation, transonic flows | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Aeronautics | ||||||||||||||||||||
HGF - Program Themes: | Efficient Vehicle | ||||||||||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||||||||||
DLR - Program: | L EV - Efficient Vehicle | ||||||||||||||||||||
DLR - Research theme (Project): | L - Digital Technologies | ||||||||||||||||||||
Location: | Göttingen | ||||||||||||||||||||
Institutes and Institutions: | Institute for Aerodynamics and Flow Technology > CASE, GO | ||||||||||||||||||||
Deposited By: | Grabe, Dr. Cornelia | ||||||||||||||||||||
Deposited On: | 25 Apr 2023 16:50 | ||||||||||||||||||||
Last Modified: | 14 Jun 2023 17:03 |
Repository Staff Only: item control page