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ABSTRACT

Purpose The paper aims to improve Reynolds-Averaged
Navier Stokes (RANS) turbulence models using a data-
driven approach based on machine learning. A special
focus is put on determining the optimal input features
used for the machine learning model.
Methodology The Field Inversion and Machine
Learning (FIML) approach is applied to the negative
Spalart-Allmaras turbulence model for transonic flows
over an airfoil where shock-induced separation occurs.
Feature selection methods are applied to the results of
the field inversion to determine the optimal input features
for the machine learning model.
Findings Optimal input features and a machine learning
model are developed which improve the existing nega-
tive Spalart-Allmaras turbulence model with respect to
shock-induced flow separation.
Originality A comprehensive workflow is demonstrated
that yields insights on which input features and which
machine learning model should be used in the context of
the FIML approach
Keywords RANS, data-driven turbulence modeling,
machine learning, feature selection, flow separation,
transonic flows
Paper type Research paper

ABBREVIATIONS

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

FIML Field Inversion and Machine Learning

LES Large Eddy Simulation

ML Machine Learning

pETW pilot facility European Transonic Windtunnel

RANS Reynolds Averaged Navier Stokes

SA-neg Spalart-Allmaras negative turbulence model

SFS Sequential Feature Selection

1. INTRODUCTION

Turbulent flows are fully characterized by the Navier-
Stokes equations. Simulating turbulent flows hence

requires solving these equations. Direct Numerical Sim-
ulations (DNS) resolve all turbulent scales and are exact,
however, at the expense of enormous computational cost
(Probst et al., 2020). Hence, they are unfeasible for daily
simulation tasks. Time-averaging the Navier-Stokes
equations yields the RANS equations, which can be
solved with todays computational power as no small
scales must be resolved. Time-averaging however
introduces a new, unknown term, which includes the
Reynolds stresses and represents the impact of the
turbulent fluctuations on the mean flow.

The Reynolds stresses must be modeled using a
turbulence model. A common approach is to introduce
the Boussinesq hypothesis, which relates the Reynolds
stresses to the strainrate via a scalar quantity, the
eddy viscosity. For the eddy viscosity, a multitude
of algebraic, 1-equation and 2-equation models exist.
Common to RANS models is that they deliver precise
predictions at design conditions, but their reliability
greatly deteriorates towards flow conditions at the border
of the flight envelope. For example, flow separation is
often not captured correctly leading to severely false
predictions of lift coefficients close to maximum lift.

In recent years and with maturing machine learning
methods, data-driven approaches to improve existing
turbulence models have gained interest (Beck and
Kurz, 2021; Duraisamy, 2021; Schmelzer et al., 2020;
Weatheritt and Sandberg, 2016). Here, readily available
high-fidelity reference data stemming from DNS, Large
Eddy Simulations (LES) or wind tunnel measurements
are used to train a machine learning model to improve
a given turbulence model. The present study uses the
Field Inversion and Machine Learning (FIML) (Singh
and Duraisamy, 2016) approach, which gained popu-
larity in the field (Ferrero et al., 2020; Holland et al.,
2019; Jäckel, 2022). The FIML approach introduces a
correction term as a multiplier to the production term of
the turbulence model. Via inverse modeling, the ideal
form of the correction term is determined, and a machine
learning model is trained to approximate this ideal form.

We apply FIML to the one-equation negative Spalart-
Allmaras turbulence model (SA-neg) (Allmaras et al.,
2012). In particular, we use a database of wind tun-
nel measurements for the transsonic RAE2822 (Cook et
al., 1979) airfoil and aim to improve SA-neg for shock-
induced separation. A focus of this work is the engi-
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neering and selection of flow features used as inputs for
the machine learning model, building a feature selection
pipeline that can easily be adapted to new features and
different flow phenomena. The aim of the work is to
consolidate work done by among others (Holland et al.,
2019; Ling et al., 2016; Wu et al., 2018), focusing on
transonic flight and shock-induced separation.

2. METHODOLOGY

2.1 Field Inversion and Machine Learning

The first generation FIML ansatz (Singh and Duraisamy,
2016) is used, termed FIML Classic in later publications
(Holland et al., 2019). In the first step, the field inver-
sion, the optimal values for the correction term β are
determined using inverse modeling. Here, the spatially
varying β is multiplied to the turbulence production term
P of the SA-neg turbulence model, see Eq. (1). In the
second step, a machine learning model is trained to ap-
proximate the values of the correction term depending on
input features η derived from the local flow state U⃗ .

Dν̃

Dt
= β (U⃗)P(U⃗)−D(U⃗)+T (U⃗) (1)

Here, ν̃ denotes the Spalart-Allmaras transport vari-
able, U⃗ the local flow state, P, D, and T the turbulent
production, destruction, and diffusion terms respectively.
Further details of the terms of the SA-neg turbulence
model are given in the original publication.

In the first step, we determine the optimal distribution
of β by solving the approximate inverse problem

qRANS(β )≈ qref (2)

where qRANS is a quantity of interest of the RANS solu-
tion that we aim to fit to the corresponding quantity of
interest qref of a high-fidelity reference solution by op-
timizing β . Due to the non-linear nature of the RANS
equations contained in Eq. (2), we cannot solve this equa-
tion directly, but we pose the problem as an optimization
problem instead. For the selected quantity of interest, the
pressure coefficient cp, the associated cost function is

I =
1
2

N

∑
i

Vi(cref
p,i − cRANS

p,i (β ))2 +λ
1
2

M

∑
i
(βi −β0)

2 (3)

The first term of the cost function is the mean squared
error of the deviation in cp between the reference data
and the RANS solution, weighted by the cell volumes
Vi and computed across the N cells in which reference
data is available. The second term is a Tikhonov regu-
larization which penalizes deviations from the baseline
turbulence model, that is, deviations of βi, the value

of β in cell i from the default value of β , β0 = 1, for
which the turbulence model remains unchanged. This is
computed across all M cells of the computational domain.

The magnitude of the regularization is adjusted via
the regularization parameter λ . The regularization is
introduced for two reasons. First, because the problem is
ill-posed, as the number of degrees of freedom, i.e. the
number of cells as β takes on a different value βi in each
cell, is usually much larger than the number of points
where reference data is given. For example, the pressure
coefficient distribution cp is only available on the airfoil
surface while the correction term is available throughout
the flow field. Second, it allows uncertainties in the
reference data to be considered, as the regularization
restricts the magnitude of the turbulence model modifica-
tion which prevents overfitting in case of untrustworthy
reference data.

For the minimization of Eq. (3) with respect to β , a
steepest descent optimizer (Nocedal and Wright, 2006) is
employed, which updates β according to

βi+1 = βi − ε
dI
dβ i

(4)

Here, ε is the step size and dI
dβ

is the gradient of cost func-
tion Eq. (3) with respect to β . This gradient is computed
using the adjoint method (Dwight and Brezillon, 2006;
Giles and Pierce, 2000). The step size ε is determined
using the Armijo condition (Nocedal and Wright, 2006)
in each optimization step. The optimization is stopped
when the step size falls below a threshold ε0.

Having obtained the optimal values for β , the next step
is to generalize β to different flow geometries and flow
conditions. As of now, β is available only as a function
of the spatial coordinates x⃗, so it can not be easily trans-
ferred and applied to different geometries and different
flow conditions. Therefore, the next step is to identify a
function fβ which represents β depending on local flow
features ηi(U⃗) instead, that is

fβ : η0, . . . ,ηn → β (5)

The features are required to be non-dimensional, ideally
they are fully local and galilean invariant as well. The
selection of features considered in this study is presented
in Section 4.

The function fβ is approximated using machine learn-
ing, neural networks in particular. Besides neural net-
works, which are by far the most often applied ML-
method in the FIML framework, also conventional and
multiscale Gaussian processes (Zhang and Duraisamy,
2015) and Adaptive boosting (Singh, Matai, et al., 2017)
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were investigated and applied. Neural networks are re-
sponsible for ongoing successes in machine learning, es-
pecially in areas such as image detection, language pro-
cessing or autonomous driving (LeCun et al., 2015). As
regressors, they are capable of approximating any lim-
ited, continuous function arbitrarily exact with a finite
number of neurons (Universal Approximation Theorem),
making them excellent candidates for our purposes. Due
to limited space, we refer the reader for details of the
inner workings of neural networks to dedicated publica-
tions such as (LeCun et al., 2015).

RANS Solution
U, ν̃

Gradient
dI
dβ

Update β :
βi+1 = βi − ε

dI
dβ

adjoint
solver

flow
solverFi

el
d

In
ve

rs
io

n

Reference Data

Machine
Learning

Augmented
RANS Simulation

Training data
β (x,y), ηi(U, ν̃)

Model
fβ : ηi → β

Figure 1: Workflow of FIML Classic

Figure 1 recapitulates the workflow of the FIML Clas-
sic approach.

2.2 Feature Engineering and Selection

As it might be unclear which input features are relevant
for the prediction of β , we need to employ feature engi-
neering and feature selection. Feature engineering in the
present case means to derive features from the flow state
which are dimensionless and ideally locally available and
Galilean invariant. The need for dimensionless features
stems from the fact that neural networks can not take
care of dimensional consistency and that the correction
term β is dimensionless itself. The desire for features
being local is to enable easy availability of the features
in general CFD solvers.

Many of the features listed in Section 4 were found in a
literature survey, with few added due to physical consid-
erations of the present phenomenon, shock-induced sep-
aration. After building a database of possible features, a

subset of promising features was selected using the fol-
lowing techniques.

2.2.1 Feature Correlation

The first technique is feature correlation. Here, a correla-
tion matrix is built which measures the correlation among
the features and the features and the correction term. The
used metric is Spearman’s rank correlation coefficient rs
(“Spearman Rank Correlation Coefficient” 2008), see Eq.
(6).

rS =
cov(R(x),R(y))

σR(x)σR(y)
(6)

Here, cov(x,y) is the covariance of two variables x,y and
σx the standard deviation of variable x. As opposed to
Pearson’s correlation coefficient, it correlates the ranks
of the observations R(x),R(y) instead of the observations
x,y themselves. While Pearson’s correlation coefficient
assumes that the variables are normally distributed and
detects only linear relationships, Spearman’s rank cor-
relation coefficient is able to also detect any non-linear,
monotonous relationships, and makes no assumptions
about the variable distribution. If the relationship
between the variables is perfectly monotonous, rS goes
towards rS = 1, or towards rS =−1, if the relationship is
inverse. In case of no discernible relationship between
the variables, rS tends towards rS = 0.

Computing the correlation matrix between the possible
features themselves and the features and the correction
term β allows firstly, to remove redundant features, that is
features that are monotonously depending on each other
and secondly, to remove features that show no promising
relationship with β .

2.2.2 Sequential Feature Selection

With the reduced feature set obtained, Sequential Feature
Selection is applied. Sequential Feature Selection is not
agnostic to the selected machine learning model, as it in-
volves the ML model directly. The basic idea is to train
the ML model, starting from a subset of features and then
to sequentially add or remove features depending on their
importance. In Sequential Forward Selection, the process
is

1. Randomly pick a subset of k features from the whole
set of features.

2. Train the ML model on this feature subset.

3. Randomly add another feature from the remaining
features.

4. Retrain the ML model and keep the feature if the
loss function decreases, discard it otherwise.
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5. Continue with step 3 until the loss function doesn’t
decrease further or the size of the feature subset be-
comes larger than intended.

In Sequential Backward Selection, one starts with the
full set of features and removes features until the loss
function increases. Bidirectional SFS methods include
additional inclusion/exclusion steps, which allow to
include (exclude) a feature again that was previously
dismissed (included).

There are three major points to be made about sequen-
tial feature selection:

• Since the algorithm is not agnostic towards the cho-
sen ML model, it can yield substantially better re-
sults for this particular model, but the results are not
universal and potentially worse for other models.

• Especially in the case of neural networks, a disad-
vantage is that one needs to pre-define the network
hyperparameters, as either a too simple or a too com-
plex architecture might be chosen. In this work, we
use a set of neural network hyperparameters proven
to work before (Jäckel, 2021), but will do a hyper-
parameter optimization subsequently.

• Although SFS is a greedy algorithm that doesn’t ne-
cessitate an exhaustive search of all possible subsets
of features, it can still become computationally ex-
pensive as for each investigated subset of features,
the ML model has to be trained. Additionally, the
algorithm should be run multiple times to eliminate
effects due to the random initialization of the neural
network parameters. In this work, computational ef-
fort was still only on the order of few minutes, using
a current mid-class graphics card for NN training.

2.2.3 Engineering considerations

The previous steps leave us a shortlist of input features
for the machine learning part. The final step is to train
different neural networks on subsets of features from this
shortlist, and apply them in the full CFD loop. While a
ML model might train flawlessly, it is not ensured that
its inclusion in the turbulence model and the full CFD
loop will work as well. A frequent observation is that in-
cluding the trained model will impact convergence heav-
ily due to a unsmooth prediction of β . Hence, the final
step is to evaluate the ML models and appropriate feature
subsets according to their performance in the CFD loop.

2.3 Software

The Field Inversion and Machine Learning approach has
been implemented in DLR’s software ecosystem before
(Jäckel, 2021), using the unstructured high-performance

Table 1: The cases selected from the database for field
inversions.

Case Re Ma α

T1 2.68×106 0.717 2.604◦

T2 6.36×106 0.742 4.456◦

T3 8.79×106 0.721 5.669◦

T4 10.94×106 0.724 5.654◦

T5 13.18×106 0.724 5.650◦

T6 15.32×106 0.724 5.145◦

CFD code TAU (Schwamborn et al., 2006) and the
python optimization toolbox SMARTy (Bekemeyer et al.,
2022). For machine learning purposes, the open source
frameworks TensorFlow (Martin Abadi et al., 2015) and
Scikit-learn (Pedregosa et al., 2011) were used. The pur-
pose of TAU is hereby to solve the RANS equations and
the adjoint problem. SMARTy wraps around TAU and
enables running the different modes of TAU in the con-
text of the stated optimization problem, that is, running
TAU in flow solver mode to evaluate the cost function,
and running TAU in adjoint solver mode to compute the
gradient dI

dβ
. SMARTy also wraps TensorFlow, thereby

enabling communication between the machine learning
model and the flow solver.

3. DATABASE

The goal of this study is to apply the Field Inversion
and Machine Learning approach to flows with shock-
induced separation. For this purpose, kindly the AIRBUS
RWC.01 database was made available to the authors. The
AIRBUS RWC.01 data base gathers aerodynamic experi-
mental data acquired in 2016 using the pilot facility of the
European Transonic Wind Tunnel (pETW) for a series of
2D airfoil sections.

3.1 Windtunnel Measurements

The RWC.01 database contains pressure tap measure-
ments for the RAE2822 airfoil from a windtunnel cam-
paign covering a Mach number range from 0.2 to 0.96,
a Reynolds number range from 2.7 × 106 to 15.7 ×
106 and an angle of attack sweep from −2.5◦ to 13◦.
The RAE2822 is a transsonic, rear-loaded airfoil with
a rooftop type pressure distribution. The windtunnel
width is three times the chord length of the airfoil, and
the pressure is measured along the centerline of the air-
foil, hence 3D effects are considered negligible. From
this large database, we selected multiple cases in which
shock-induced separation appears and the predictions of
the baseline SA-neg model were considerably off, select-
ing cases with differing flow conditions on purpose. A
list of the selected cases is provided in Table 1.
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3.2 Field Inversion

For the field inversion, first, the optimal regularization
parameter λ must be determined for each case in Table 1
separately. The canonical way (Jäckel, 2021; Singh and
Duraisamy, 2016) to do so is to conduct multiple field in-
versions for different values of λ , then plot the respective
two terms of Eq. (3) against each other in a log-log plot,
which should yield a so-called L-Curve (Hansen, 2000).
There the optimal value for λ lies in the corner of the
L-shaped curve, balancing prediction improvements and
magnitude of the model modification. In the present case,
we could not obtain such a curve, possibly due to un-
known uncertainties in the wind tunnel measurements or
suboptimal convergence in the optimization.

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

c p

baseline
λ = 10−9

λ = 10−10

λ = 10−12

RWC.01

Figure 2: cp distributions of case T3 from the baseline
computation, different λ and from the reference data.

Instead, we resorted to engineering judgement. For a
too large λ , the shock location does not change signifi-
cantly from the baseline solution, and the β -field is not
very pronounced. For a too small λ , the shock location is
matched well, and the pressure downstream of the shock
is also matched better. However, this comes at the cost of
a much more pronounced β -field, with stronger gradients
and more extrema, which is considered to complicate the
machine learning step. Additionally, the results from the
pressure sensors downstream of the shock are uncertain.
Hence, we choose λ such that

• the shock location is improved, but the pressure
downstream is maintained, and

• the β -field does not become overly complex.

Figures 2 and 3 show the effects of different values of
λ on cp and β respectively.

Figure 4 shows for each case the cp distributions on
the upper side of the airfoil for the field inversion result
(solid line), the baseline solution (dashed line), and the
reference data (dotted line). For case T1, no regular-
ization parameter was found that would improve the
results without hurting our engineering considerations.
For cases T2 through T6, the shock location is improved
considerably throughout, without hurting the engineering

0

0.1

y

λ = 10−10

0 0.5 1 1.5

β

0.4 0.6 0.8 1 1.2

0

0.1

x

y

λ = 10−12

Figure 3: β -fields for different λ , case T3. Note the ad-
ditional extrema and the wider range of β for λ = 10−12.

considerations.

T1

T2

T3

T4

T5

T6

x/c

c p
baseline
inversion
RWC.01

Figure 4: Surface cp from the baseline RANS computa-
tion, field inversion, and reference database for cases T1
- T6.

Figures 5 and 6 show the full flow fields in terms of
the pressure coefficient cp and the Mach number of the
field inversion result for case T3 respectively. In both, the
oblique shock wave beginning at x/c ≈ 0.4 is well recog-
nizable. The streamlines shown in Figure 6 emphasize
the separation bubble downstream of the shock location.

Finally, Figure 7 shows the resulting β -fields for cases
T1, T3 and T6. Cases T2, T4 and T5 are not shown due to
their similarity to cases T3 and T6. For cases T2 through
T6, β is typically decreased to around β = 0.5 at the
shock location (x/c ≈ 0.4 . . .0.6, depending on the case)
and the surrounding areas. This decrease corresponds to
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Figure 5: cp from the field inversion, case T3.
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Figure 6: Local Mach number and streamlines from the
field inversion results for case T3.

reduced turbulent production, hence a reduced eddy vis-
cosity and therefore the shock location moves upstream.
At the beginning of the ensuing separation bubble, turbu-
lent production is still decreased. Then, an area with an
increased β , that is, increased turbulent production, fol-
lows at the outer edge of the separation bubble. For case
T1 however, the flow remains attached, and turbulent pro-
duction is decreased only slightly along the entire upper
surface. As discussed previously, this case was partic-
ularly troublesome to find a plausible regularization pa-
rameter for, and a relatively high regularization was used.

4. FEATURE SELECTION

With the data gathered in the previous section, the feature
selection procedure discussed in Section 2.2 was applied.

4.1 Considered Features

The following features are considered:

1. The normalized transport variable of the SA-neg
model χ = ν̃/ν , where ν is the molecular kinematic
viscosity.

2. The ratio of the production to the destruction term
of the SA-neg model P/D

3. The dimensionless function fw, part of the destruc-
tion term D of the SA-neg model, see (Allmaras et
al., 2012).

0
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0.5 0.6 0.7 0.8 0.9 1 1.1

β

0
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Re= 9×106

0.4 0.6 0.8 1 1.2

0

0.1

x

y

Re= 15×106

Figure 7: β -fields for cases T1, T3 and T6. Note that the
results for cases T2, T4, T5 are very similar to T3 and T6
and hence not depicted.

4. A non-dimensionalized variant of the SA-neg vis-
cosity gradient magnitude ∇ν̃ = d/(ν + ν̃)|∇ν̃ |, ac-
cording to (Ferrero et al., 2020). d is the wall dis-
tance.

5. The magnitude of the vorticity tensor, non-
dimensionalized Ω = d2/(ν + ν̃)Ω, where Ω is the
magnitude of the vorticity Ω = ∥Ωi j∥.

6. The ratio of the local turbulent stresses to the shear
stress at the closest wall τw (Holland et al., 2019;
Jäckel, 2022), δ = µtS/(1.5τw)

7. The ratio of the magnitudes of strainrate and vortic-
ity S/Ω = ∥Si j∥/∥Ωi j∥

8. The normalized Reynolds stress tensor magnitude
τ/τre f , where τre f = ρ(ν + ν̃)2/d2 and τ = ∥τi j∥.
Based on (Ferrero et al., 2020).

9. The boundary layer shape factor H12 = δ ∗/θ , where
δ ∗ is the displacement thickness, and θ is the mo-
mentum thickness of the boundary layer.

10. A measure of the turbulent kinetic energy,
k′QCR = 1.5CCr2νt

√
2Si jSi j/(

1
2 ∑i u2

i ), based on
the quadratic constitutive relation (QCR) for SA-
neg models, as used by (Volpiani et al., 2021). It is
CCr2 = 2.5, and ui are the velocities.

11. The DDES wall shielding function fd = 1 −
tanh(8r3

d), used before in this or a modified version
by (Ferrero et al., 2020; Köhler et al., 2020).
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12. The Rotta and Clauser pressure gradient parameter

βRC = δ ∗/(ρu2
τ)∂ p/∂ s, where

∂ p
∂ s

is the stream-
wise pressure gradient.

13. The inner pressure gradient parameter ∆ps+ =
ν/(ρu3

τ)∂ p/∂ s

Note that not all features fulfill the criteria of being lo-
cally available, for example δ ,H12 and the pressure gra-
dient parameters βRC and ∆ps+. These non-local fea-
tures typically depend on surface quantities and are made
available locally by projecting the surface values into the
field, that is, at every field point the value of the quantitiy
at the closest wall is made available.

4.2 Spearman’s Correlation

We now combine the datasets for the field inversions from
all cases and compute Spearman’s rank correlation coef-
ficient between all of the features and the features and β .
Figure 8 shows the resulting correlation matrix. From the
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k′QCR
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Ω

β

Figure 8: Correlation matrix

correlation matrix, we find that the following features are
redundant:

• k′QCR and δ at a correlation of rS = 0.94. Looking
at their definitions, this is expected, as both features
are proportional to νtS. The correlation of k′QCR and
β is rS = 0.17, less than the correlation of δ and β

at rS = 0.21, hence k′QCR is eliminated.

• fd and τ/τre f at a correlation of rS = 0.98. Here,
τ/τre f is eliminated due to its lower correlation with
β at rS =−0.09 as opposed to rS =−0.1 for ( fd ,β ).
Deeper insight reveals that both features scale with
d2

ν̃
and one of {S,

√
dui
dx j

du j
dxi

} in relevant parts of the
flow, explaining their high correlation.

• βRC and ∆ps+ at a correlation of rS = 0.95. Accord-
ing to their definitions, both are different scalings

of ∂ p/∂ s, hence this is expected. Both are elimi-
nated, as their correlation with β is very small with
rS = 0.03 and rS = 0.02 respectively.

This results into the following subset of features:

{Ω,H12, fw, fd ,∇ν̃ ,δ ,
S
Ω
,

P
D
,χ} (7)

4.3 Sequential Feature Selection

Before running the Sequential Feature Selection, which
includes the actual training of a neural network, the data
needs to be preprocessed.

4.3.1 Preprocessing

Some of the features values span multiple orders of mag-
nitudes. Applying the natural logarithm to these features
makes them more amenable to machine learning by push-
ing their distribution towards a Gaussian distribution.

10−3 100 103 106 109 1012
0

5
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P/D

ρ
[%

]
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0

5

10

15

ln(P/D)

ρ
[%

]

Figure 9: Histograms for P/D (top) and ln(P/D) (bot-
tom). Note the different scales of the x-axis.

Figure 9 demonstrates the effect this transformation
has on the example of the feature P/D. The feature spans
orders of magnitudes from O(10−3) to O(1015). Apply-
ing the logarithm brings all data to an order of magni-
tude of O(1), and an almost Gaussian distribution, which
makes the data much easier discernable to the neural net-
work. The features to which the natural logarithm is ap-
plied are

{Ω,∇ν̃ ,δ ,
S
Ω
,

P
D
,χ}, (8)

Note that this transformation leads to a loss of informa-
tion, as the logarithm is not defined for negative values
which means that affected samples must be removed
from the dataset. Most of the features become only
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negative when ν̃ < 0. In that case, the modification
introduced by the negative Spalart-Allmaras model
formulation becomes active. We expect it to be better to
leave the turbulence model unchanged in that case for
numerical robustness, therefore it is no problem to leave
out these samples.

0.6 0.7 0.8 0.9 1 1.1
0

20
40
60
80

100

β

ρ
[%

]

0.6 0.7 0.8 0.9 1 1.1
0

10

20

β

ρ
[%

]

Figure 10: Histograms for the full set of β (top) and the
reduced set of β (bottom).

A further step is to reduce the amount of samples
where β ≈ 1. This is true for the majority of the
samples, see Figure 10, upper diagram. For the purpose
of machine learning this is detrimental, as it rewards
the ML algorithm to predict a constant β = 1, as this
already decreases the cost function significantly. The
procedure hereby is to pick all nβ ̸=1 samples for which
|β − 1| > 0.02 holds, and then to add 0.2nβ ̸=1 of the
samples with |β − 1| < 0.02. These thresholds and
factors have been obtained manually by targeting a
more Gaussian distribution. According to Figure 10,
the distribution of β is now much closer to a Gaussian
distribution and therefore better suited for ML training.

These preprocessing steps leave around 7100 samples,
about 1% of the initial dataset size.

4.3.2 Procedure

A neural network with two layers and 50 neurons each
is used. As activation functions the rectified linear unit
(ReLU) is used together with the Adam optimizer. Due
to the random initialization of neural networks, SFS runs
are non-deterministic. To alleviate this, each SFS vari-
ant, forward and backward, is run three times. We pre-
define a range of 3 to 5 for the number of features the

SFS should return. For each run, we then assign a score
to the returned feature, ranging from 5 for the most im-
portant feature to 1 for the least important feature. Then,
the scores over the different SFS runs are summed up to
get the final score for each feature.

4.3.3 Results

The final scores from SFS as well as the correlations with
β , both, for the full (”full data”) and the preprocessed
(”training data”) datasets are listed in Table 2.

Table 2: Selection table for input features to be used for
neural network training

Feature SFS score Correlation with β (x)
Full data Training data

ln(χ) 30 0.18 0.61
ln(δ ) 18 0.21 0.62
ln(Ω) 17 0.12 0.20
ln
( S

Ω

)
8 -0.16 -0.11

H12 8 0.11 0.18
fd 2 -0.1 0.13
fw 1 -0.15 0.20

ln(∇ν̃) 0 0.21 0.18

By far, ln(χ) is considered the most important feature,
followed by ln(δ ) and ln(Ω), both at the same level. With
less importance, ln(S/Ω) and H12 follow. Not much sig-
nificance is attributed to fd , fw and ln(∇ν̃).

5. MACHINE LEARNING

With the results obtained before, finally a neural network
can be trained and included in the CFD solver to augment
the SA-neg turbulence model. As inputs, we use the fea-
tures

{ln(χ), ln(δ ), ln(Ω), ln(
S
Ω
),H12}, (9)

which are the top 5 of the features listed in Table 2.
The neural network architecture is optimized using
the hyperparameter optimization strategy discussed in
(Sabater et al., 2021). The result is a network with 4
layers, 86,67,52 and 40 neurons respectively.

Figure 11 shows the training success. The line
indicates perfect predictions, the symbols show the
actual predictions, located not far off the line. With the
thus-augmented turbulence model, CFD calculations are
carried out for the cases that were part of the training
dataset, T2 - T6, as well for some additional validation
cases, T1 and V1-V3, see Table 3.

In Figure 12, results are shown for multiple training
and validation cases. It contains the surface cp of the
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Figure 11: Truth vs Prediction for the trained NN.

Table 3: Validation cases

Case Re Ma α

V1 6.33×106 0.721 5.737◦

V2 8.76×106 0.742 4.420◦

V3 15.36×106 0.711 5.145◦

baseline model (dashed line), the reference data (dotted),
the NN-augmented prediction (dash-dotted), and, where
applicable, the inversion result (solid line). For cases
T2, T3 and V2, the prediction of the shock location
is significantly improved, reaching the field inversion
solution. For V1, the improvement is less clear, since the
shock location is not as clear in the reference data. For
cases T1 and V3 no shock-induced separation appears
and the shock location is not improved. In both cases
however, the prediction is also not worsened vis-â-vis
the baseline model. Note that T1 was not part of the
training data as the field inversion did not yield usable
improvements.

In (Jäckel, 2022), a different approach with the Field
Inversion and Machine Learning approach was taken
which fits an analytical function instead using the direct
FIML (Holland et al., 2019) variant. It uses test case T3
as well however and achieves the same improvement in
the prediction of the shock location.

6. SUMMARY

In this study, the Field Inversion and Machine Learning
approach was applied to cases with shock-induced
separation. For this purpose, an extensive database of
windtunnel measurements for the RAE2822 at transonic
flow conditions was investigated. This included the

T1

T2

T3

V1

V2

V3

x/c

c p

baseline
inversion
augmented
RWC.01

Figure 12: Surface cp for cases T1 - T3 and V1 - V3. For
T1 - T3, the inversion and augmented results are on top
of each other.

identification of cases for which the CFD simulations
with the SA-neg model deviated significantly from the
measured data, and selecting these cases for field inver-
sions. The next step was feature selection, where a list
of possible input features for the machine learning step
was established and where the features were investigated
in terms of their applicability to the present problem
by examining their correlations among themselves and
with the target term as well as via sequential feature
selection. Then, the hyperparameters of the deployed
neural network were optimized. The thus optimized
network was trained using the previously selected
input features to predict the correction term introduced
into the turbulence model, and successfully applied to
multiple cases, both, cases that were part of the training
data and cases that were unseen. To apply the trained
model to other testcases with similar flow conditions,
a more comprehensive training process based on the
FIML Direct approach (Holland et al., 2019) is needed.
The approach was already adopted for subsonic flows
(Jäckel, 2022) and enables the training process on several
testcases simultaneously. In the present work, the focus
was on feature selection methods and on first steps for
data-driven turbulence modeling in transonic flows.

Future points of research are

• to combine the training data obtained in this study
for shock-induced separation with previously ob-
tained data (Jäckel, 2021) for subsonic trailing edge
separation and investigate if a common correction
model can be found based on the preferred features
as determined in this study

9



• to investigate different correlation coefficients, as
Spearman’s correlation coefficient only considers
two variables at a time, and detects only monotonous
relationships.

• to add more features and other transformations than
the natural logarithm such as the transformation pro-
posed by (Ling et al., 2016).

• to put more focus on the availability of the features
in other CFD solvers, where non-local features such
as for example the wall shear stress at the closest
wall might not be given.

• to train on several transonic flow testcases for an im-
proved generalizability of the resultung data-driven
turbulence model.
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