Grabe, Cornelia und Jäckel, Florian und Khurana, Parv und Dwight, Richard (2023) Data-driven augmentation of a RANS turbulence model for transonic flow prediction. International Journal of Numerical Methods for Heat and Fluid Flow, 33 (4), Seiten 1544-1561. Emerald Group Publishing Ltd.. doi: 10.1108/HFF-08-2022-0488. ISSN 0961-5539.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
504kB |
Offizielle URL: https://www.emerald.com/insight/0961-5539.htm
Kurzfassung
Purpose This paper aims to improve Reynolds-averaged Navier Stokes (RANS) turbulence models using a data-driven approach based on machine learning (ML). A special focus is put on determining the optimal input features used for the ML model. Design/methodology/approach The field inversion and machine learning (FIML) approach is applied to the negative Spalart-Allmaras turbulence model for transonic flows over an airfoil where shock-induced separation occurs. Findings Optimal input features and an ML model are developed, which improve the existing negative Spalart-Allmaras turbulence model with respect to shock-induced flow separation. Originality/value A comprehensive workflow is demonstrated that yields insights on which input features and which ML model should be used in the context of the FIML approach
elib-URL des Eintrags: | https://elib.dlr.de/194686/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Data-driven augmentation of a RANS turbulence model for transonic flow prediction | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 17 April 2023 | ||||||||||||||||||||
Erschienen in: | International Journal of Numerical Methods for Heat and Fluid Flow | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 33 | ||||||||||||||||||||
DOI: | 10.1108/HFF-08-2022-0488 | ||||||||||||||||||||
Seitenbereich: | Seiten 1544-1561 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Emerald Group Publishing Ltd. | ||||||||||||||||||||
ISSN: | 0961-5539 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | RANS, data-driven turbulence modeling, machine learning, feature selection, flow separation, transonic flows | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||||||
Standort: | Göttingen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, GO | ||||||||||||||||||||
Hinterlegt von: | Grabe, Dr. Cornelia | ||||||||||||||||||||
Hinterlegt am: | 25 Apr 2023 16:50 | ||||||||||||||||||||
Letzte Änderung: | 14 Jun 2023 17:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags