Rüttgers, Alexander and Petrarolo, Anna (2023) Scalable Machine Learning to Analyze Rocket Combustion Data. SIAM Conference on Computational Science and Engineering (CSE23), 26. Feb. - 03. März 2023, Amsterdam, Niederlande.
![]() |
PDF
2MB |
Item URL in elib: | https://elib.dlr.de/194559/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | Scalable Machine Learning to Analyze Rocket Combustion Data | ||||||||||||
Authors: |
| ||||||||||||
Date: | March 2023 | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | No | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | machine learning, high-performance data analytics, anomaly detection, rocket combustion | ||||||||||||
Event Title: | SIAM Conference on Computational Science and Engineering (CSE23) | ||||||||||||
Event Location: | Amsterdam, Niederlande | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Dates: | 26. Feb. - 03. März 2023 | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||
DLR - Research theme (Project): | R - Tasks SISTEC | ||||||||||||
Location: | Köln-Porz | ||||||||||||
Institutes and Institutions: | Institute for Software Technology Institute for Software Technology > High-Performance Computing Institute of Space Propulsion > Spacecraft and Orbital Propulsion | ||||||||||||
Deposited By: | Rüttgers, Dr. Alexander | ||||||||||||
Deposited On: | 17 Apr 2023 10:09 | ||||||||||||
Last Modified: | 17 Apr 2023 10:09 |
Repository Staff Only: item control page