DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Scalable Machine Learning to Analyze Rocket Combustion Data

Rüttgers, Alexander and Petrarolo, Anna (2023) Scalable Machine Learning to Analyze Rocket Combustion Data. SIAM Conference on Computational Science and Engineering (CSE23), 26. Feb. - 03. März 2023, Amsterdam, Niederlande.

[img] PDF

Item URL in elib:https://elib.dlr.de/194559/
Document Type:Conference or Workshop Item (Speech)
Title:Scalable Machine Learning to Analyze Rocket Combustion Data
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Rüttgers, AlexanderUNSPECIFIEDhttps://orcid.org/0000-0001-6347-9272UNSPECIFIED
Petrarolo, AnnaUNSPECIFIEDhttps://orcid.org/0000-0002-2291-2874UNSPECIFIED
Date:March 2023
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In ISI Web of Science:No
Keywords:machine learning, high-performance data analytics, anomaly detection, rocket combustion
Event Title:SIAM Conference on Computational Science and Engineering (CSE23)
Event Location:Amsterdam, Niederlande
Event Type:international Conference
Event Dates:26. Feb. - 03. März 2023
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space System Technology
DLR - Research area:Raumfahrt
DLR - Program:R SY - Space System Technology
DLR - Research theme (Project):R - Tasks SISTEC
Location: Köln-Porz
Institutes and Institutions:Institute for Software Technology
Institute for Software Technology > High-Performance Computing
Institute of Space Propulsion > Spacecraft and Orbital Propulsion
Deposited By: Rüttgers, Dr. Alexander
Deposited On:17 Apr 2023 10:09
Last Modified:17 Apr 2023 10:09

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.