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Rocket engine combustion analysis

ÁAim: Cost reduction of rocket engines, be competitive with e.g. Space-X

Traditional liquid rocket engine:

Å 2 pumps transporting fluid fuel and oxidizer at 

very high pressure and flow

Å Advantages

Å Burning rate can be controlled precisely

Å Disadvantages

Å Pumps are mechanically very complex

Å Expensive
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Rocket engine combustion analysis

ÁAim: Cost reduction of rocket engines, be competitive with e.g. Space-X

Solid propellant rocket engine

Å Fuel and oxidizer are mixed in solid form

Å Advantage

Å Cheap

Å Disadvantage

Å Burning rate can not be varied during flight
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Rocket engine combustion analysis

ÁAim: Cost reduction of rocket engines, be competitive with e.g. Space-X

Hybrid rocket engine

Å Pressurized fluid oxidizer

Å Solid fuel

Å A valve controls, how much oxidizer gets into 

the combustion chamber

Å Advantages

Å Cheap

Å Controllable

©2011, University of Waikato



Experiments on new hybrid rocket fuels at DLR

ÁDLR investigates new hybrid rocket fuels on a paraffin basis at Institute of Space Propulsion 

in Lampoldshausen.           

ÁAbout 300 combustion tests were performed with single-slab paraffin-based fuel with 20Á

forward facing ramp angle + gaseous oxygen.

ÁCombustion is captured with high-speed video camera with 10 000 frames / second

Fig. 1: Fuel slap configuration before (top) 

and after (bottom) combustion test
Fig. 2: Hybrid rocket engine combustion chamber
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Heat

ÁHeat = Helmholtz Analytics Toolkit

ÁDeveloped by three Helmholtz research organizations in Germany:

ÁResearch Center Juelich (FZJ)

ÁKarlsruhe Institute of Technology (KIT)

ÁGerman Aerospace Center (DLR)

ÁPython library for parallel, distributed data analytics and machine 

learning

ÁAim: Bridge data analytics and high-performance computing

ÁOpen Source licensed, MIT

https://github.com/helmholtz-analytics/heat

https://github.com/helmholtz-analytics/heat


Core Idea: Data Distribution
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Functionality achieved

Á Implementation of a distributed parallel tensor math, 

NumPy-compatible, based on PyTorch

ÁParallel data I/O via HDF 5 and NetCDF

ÁDevelopment of mpi4torch to enable automatic 

differentiation of distributed PyTorch code

ÁMultiple methods (clustering, classification, regression)

ÁData parallel Zolotarev-SVD 

(see SIAM CSE 23 poster by Fabian Hoppe)

ÁData-parallel training of neural nets (DASO algorithm)
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Dissimilarity measure for image data

ÁAlgorithms often require pairwise dissimilarity 
of images (matrix of size nr_of_images x 
nr_of_images).

ÁStandard approaches such as mean squared 
error (MSE) / discrete L2-norm often differ from 
human recognition.

ÁAdvanced dissimilarity measures such as 
structural similarity (SSIM) often perform 
better (considers luminance, contrast and 
structure) but are much more expensive.

ÁStructural similarity (SSIM)/ structural 
dissimilarity (DSSIM) is not a distance metric. Example: (b)-(f) with same MSE, SSIM decreases*

*https://nsf.gov/news/mmg/mmg_disp.jsp?med_id=79419&fro

m=



Pairwise distance matrices for test 284 

Computing time: 3-4 minutes Computing time: 5 days (OpenMP parallel, 56 cores)

one comparison å 0.1 s (scikit-image)
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Spectral Clustering of test 284

Å Fig. 1: Results of spectral

clustering with ssim affinity

matrix.

ÅNote that the number of

clusters k is a hyperparameter

of the clustering algorithm.
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