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Rocket engine combustion analysis

▪ Aim: Cost reduction of rocket engines, be competitive with e.g. Space-X

Traditional liquid rocket engine:

• 2 pumps transporting fluid fuel and oxidizer at 

very high pressure and flow

• Advantages

• Burning rate can be controlled precisely

• Disadvantages

• Pumps are mechanically very complex

• Expensive
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Rocket engine combustion analysis

▪ Aim: Cost reduction of rocket engines, be competitive with e.g. Space-X

Solid propellant rocket engine

• Fuel and oxidizer are mixed in solid form

• Advantage

• Cheap

• Disadvantage

• Burning rate can not be varied during flight

©2011, University of Waikato



Rocket engine combustion analysis

▪ Aim: Cost reduction of rocket engines, be competitive with e.g. Space-X

Hybrid rocket engine

• Pressurized fluid oxidizer

• Solid fuel

• A valve controls, how much oxidizer gets into 

the combustion chamber

• Advantages

• Cheap

• Controllable

©2011, University of Waikato



Experiments on new hybrid rocket fuels at DLR

▪ DLR investigates new hybrid rocket fuels on a paraffin basis at Institute of Space Propulsion 

in Lampoldshausen.           

▪ About 300 combustion tests were performed with single-slab paraffin-based fuel with 20°

forward facing ramp angle + gaseous oxygen.

▪ Combustion is captured with high-speed video camera with 10 000 frames / second

Fig. 1: Fuel slap configuration before (top) 

and after (bottom) combustion test
Fig. 2: Hybrid rocket engine combustion chamber
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Heat

▪ Heat = Helmholtz Analytics Toolkit

▪ Developed by three Helmholtz research organizations in Germany:

▪ Research Center Juelich (FZJ)

▪ Karlsruhe Institute of Technology (KIT)

▪ German Aerospace Center (DLR)

▪ Python library for parallel, distributed data analytics and machine 

learning

▪ Aim: Bridge data analytics and high-performance computing

▪ Open Source licensed, MIT

https://github.com/helmholtz-analytics/heat

https://github.com/helmholtz-analytics/heat


Core Idea: Data Distribution

Server#1
PyTorch 
Tensor#1

Server#2
PyTorch 
Tensor#2

Server#3
PyTorch 
Tensor#3

HeAT Tensor
Example:

Server#1
[0, 1]

Server#2
[2, 3]

Server#3
[4, 5]

split=1

Server#1 PyTorch Tensor#1

Server#2 PyTorch Tensor#2

Server#3 PyTorch Tensor#3

HeAT Tensor

split=0



Functionality achieved

▪ Implementation of a distributed parallel tensor math, 

NumPy-compatible, based on PyTorch

▪ Parallel data I/O via HDF 5 and NetCDF

▪ Development of mpi4torch to enable automatic 

differentiation of distributed PyTorch code

▪ Multiple methods (clustering, classification, regression)

▪ Data parallel Zolotarev-SVD 

(see SIAM CSE 23 poster by Fabian Hoppe)

▪ Data-parallel training of neural nets (DASO algorithm)
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Dissimilarity measure for image data

▪ Algorithms often require pairwise dissimilarity 
of images (matrix of size nr_of_images x 
nr_of_images).

▪ Standard approaches such as mean squared 
error (MSE) / discrete L2-norm often differ from 
human recognition.

▪ Advanced dissimilarity measures such as 
structural similarity (SSIM) often perform 
better (considers luminance, contrast and 
structure) but are much more expensive.

▪ Structural similarity (SSIM)/ structural 
dissimilarity (DSSIM) is not a distance metric. Example: (b)-(f) with same MSE, SSIM decreases*

*https://nsf.gov/news/mmg/mmg_disp.jsp?med_id=79419&fro

m=



Pairwise distance matrices for test 284 

Computing time: 3-4 minutes Computing time: 5 days (OpenMP parallel, 56 cores)

one comparison ≈ 0.1 s (scikit-image)
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Spectral Clustering of test 284

• Fig. 1: Results of spectral

clustering with ssim affinity

matrix.

• Note that the number of

clusters k is a hyperparameter

of the clustering algorithm.

A. Rüttgers, A. Petrarolo, M. Kobald, Clustering of paraffin-based hybrid rocket fuels combustion data. Exp. Fluids, 

61:4 (2020)
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Anomaly Detection: Local Outlier Factor (LOF)

▪ Algorithm that bases on local density of data points.

▪ Shares some concepts with clustering algorithms such as 
DBSCAN and OPTICS.

▪ Core idea: Compare local density of an object to the local 
densities of its neighbors.

→ distance matrices from clustering are reused

▪ Ratio „Density of neighbors / local density of an objects”

▪ ≈ 1.0 means similar density as neighbors

▪ > 1.0 means lower density than neighbors (outlier candidate)

Point density with respect to k=3 

closest neighbors



• Euclidean distance norm returns larger outlier 

score values (due to irregular matrix?).

• SSIM and Euclidean distance share some 

anomalies but there are differences.

A. Rüttgers, A. Petrarolo, Local Anomaly Detection in Hybrid Rocket Combustion Tests. Exp. Fluids, 62:136 (2021) 



Peak outliers of Euclidean metric (test 284)

Flame fluctuations in ignition phase at t = 0.1078 s

Droplet detection towards end of combustion at t = 2.2055 s



Conclusion and outlook

▪ Compute intensive clustering and anomaly detection on large 

data (e.g. rocket combustion image data) is possible using our 

software Heat

▪ Outperforms DASK, PyTorch and Scikit-Learn on distributed 

data

▪ Heat is currently used for a variety of applications, e.g.

▪ Structural prediction of proteins and RNA (project ProFiLe)

▪ Anomaly detection on remote sensing data to detect coastal 

erosion in the North and East Sea (DLR project 

RESIOKAST)

Thank you for your attention!

Runtime Speed-Up on distributed data

M. Götz et al., HeAT - a Distributed and GPU-accelerated

Tensor Framework for Data Analytics. 2020 

IEEE International Conference on Big Data (2020) pp. 

276-287 


