Adam, Nico Alexander (2023) Interferometric SAR Coherence Magnitude Estimation by Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, Seiten 3034-3044. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3257047. ISSN 1939-1404.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10068755
Kurzfassung
Current interferometric wide area ground motion services require the estimation of the coherence magnitude as accurately and computationally effectively as possible. However, a precise and at the same time computationally efficient method is missing. Therefore, the objective of this article is to improve the empirical Bayesian coherence magnitude estimation in terms of accuracy and computational cost. Precisely, this article proposes the interferometric coherence magnitude estimation by Machine Learning (ML). It results in a nonparametric and automated statistical inference. However, applying ML in this estimation context is not straightforward. The number and the domain of possible input processes is infinite and it is not possible to train all possible input signals. It is shown that the expected channel amplitudes and the expected interferometric phase cause redundancies in the input signals allowing to solve this issue. Similar to the empirical Bayesian methods, a single parameter for the maximum underlaying coherence is used to model the prior. However, no prior or any shape of prior probability is easy to implement within the ML framework. The article reports on the bias, standard deviation and RMSE of the developed estimators. It was found that ML estimators improve the coherence estimation RMSE from small samples (2 ≤ N < 30) and for small underlaying coherence compared to the conventional and empirical Bayes estimators. The developed ML coherence magnitude estimators are suitable and recommended for operational InSAR systems. For the estimation, the ML model is extremely fast evaluated because no iteration, numeric integration or Bootstrapping is needed.
elib-URL des Eintrags: | https://elib.dlr.de/194396/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | Interferometric SAR Coherence Magnitude Estimation by Machine Learning | ||||||||
Autoren: |
| ||||||||
Datum: | 14 März 2023 | ||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Ja | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 16 | ||||||||
DOI: | 10.1109/JSTARS.2023.3257047 | ||||||||
Seitenbereich: | Seiten 3034-3044 | ||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||
ISSN: | 1939-1404 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Coherence magnitude, degree of coherence, distributed scatterer in SqueeSAR or CESAR or phase linking, Gradient Boosted Trees, interferometric SAR (InSAR), Supervised Machine Learning | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||
Hinterlegt von: | Adam, Nico Alexander | ||||||||
Hinterlegt am: | 20 Mär 2023 11:18 | ||||||||
Letzte Änderung: | 19 Okt 2023 15:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags