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Interferometric SAR Coherence Magnitude
Estimation by Machine Learning

Nico Adam

Abstract—Current interferometric wide area ground motion
services require the estimation of the coherence magnitude as
accurately and computationally effectively as possible. However,
a precise and at the same time computationally efficient method
is missing. Therefore, the objective of this article is to improve the
empirical Bayesian coherence magnitude estimation in terms of
accuracy and computational cost. Precisely, this article proposes
the interferometric coherence magnitude estimation by Machine
Learning (ML).

It results in a non-parametric and automated statistical in-
ference. However, applying ML in this estimation context is not
straightforward. The number and the domain of possible input
processes is infinite and it is not possible to train all possible
input signals. It is shown that the expected channel amplitudes
and the expected interferometric phase cause redundancies in
the input signals allowing to solve this issue. Similar to the
empirical Bayesian methods, a single parameter for the maximum
underlaying coherence is used to model the prior. However, no
prior or any shape of prior probability is easy to implement
within the ML framework.

The article reports on the bias, the standard deviation and the
root mean square error (RMSE) of the developed estimators. It
was found that ML estimators improve the coherence estimation
RMSE from small samples (2 ≤ N < 30) and for small underlay-
ing coherence compared to the conventional and empirical Bayes
estimators. For three interferometric samples (N = 3) and a zero
coherence magnitude, the bias related to the sample estimator
improves from 0.53 to 0.39 by 27.8%. Assuming the maximum
underlaying coherence is 0.6, the bias is reduced by 33.0% to
0.36 for the less strict and by 45.5% to 0.29 for the strict prior.

The developed ML coherence magnitude estimators are suit-
able and recommended for operational InSAR systems. For the
estimation, the ML model is extremely fast evaluated because no
iteration, numeric integration or Bootstrapping is needed.

Index Terms—Coherence magnitude, degree of coherence,
distributed scatterer in SqueeSAR or CESAR or phase linking,
Gradient Boosted Trees, interferometric SAR (InSAR), Super-
vised Machine Learning

I. INTRODUCTION

IN recent years, SAR interferometry (InSAR) has developed
rapidly and now allows continuous monitoring of subtle

deformations of the Earth’s surface with millimeter accuracy
[1], [2], [3]. There is an increasing number of wide area
operational services such as the European Ground Motion
Service (EGMS) [4], [5], [6] and the Ground Motion Service
Germany [7], [8], [9] that make the deformation maps freely
available and thus widely visible. For their production, the
coherence magnitude is an essential estimate, since this is
the crucial weighting [10] in all estimation methods based
on distributed scatterers. Due to the large amount of data
and the significance, there is an actual need to estimate this
parameter as accurately and computationally effectively as
possible. Technically, the task is to estimate the population

parameter coherence magnitude from a sample of size N .
However, the challenges are the bias and variance of the
estimate, which are large for small coherences and small
sample sizes, and the high computational cost of using more
precise methods.

This article proposes the interferometric coherence magni-
tude estimation by Machine Learning (ML). ML has made a
lot of progress in recent years and has already found numerous
applications in radar remote sensing [11], but not for the direct
estimation of this parameter.

Practically, coherence magnitude estimation is a special kind
of statistical inference. Conventional parametric methods are
Maximum Likelihood Estimation (MLE) and Bayesian tech-
niques. Basically, Bootstrapping is a non-parametric approach
to statistical inference. And, indeed, ML can be considered to
be another non-parametric and automated statistical inference.

Estimating the coherence magnitude has long been an active
research topic. It stems from the fact that all state-of-the-art
InSAR processing methods using distributed scatterers require
precise coherence estimates [2], [3], [12], [13]. As pointed out
by Zebker and Villasenor [14] as well as Just and Bamler [15]
it is a proxy for the signal to noise ratio (SNR). Fundamental
work on the underlying statistical models are contributed by
Goodman [16] and Touzi et al. [17], [18] and is the basis
for all conventional parametric methods. The sample estimator
for the coherence magnitude is universal. Therefore, it is
implemented by default in operational InSAR systems. It has
been comprehensively studied by Touzi and Lopes [17] and
its characteristics are well known.

Different techniques have been developed to improve the
estimation accuracy. Touzi et al. [18] proposed the inversion
of the functional relation between the first moment of the
sample coherence magnitude estimate and the true coherence.
For the applicability of this method, the authors state that
the number of samples must be sufficiently large. Zebker and
Chen [19] published a bias correction by fitting a polynomial
to coherence estimates of simulated data as a function of
the true correlation and the number of looks in the estimate.
Another bias mitigation has been published by Abdelfattah and
Nicolas [20] based on the logarithm of the sample coherence
named second kind statistic. The first non-parametric approach
has been published by Jiang et al. [21] with the Double
Bootstrapping. It is computationally demanding and the double
bias correction introduces extra estimation variability which
can be observed by a high estimator RMSE. Recently, the
empirical Bayesian method has been published [22]. For the
first time, the inclusion of prior knowledge is demonstrated.
The empirical Bayesian method improves the coherence mag-
nitude estimation with respect to bias and standard deviation
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measurably in a low estimation RMSE. Most improvements
related to small sample sizes and low coherences which is
advantageous in repeat pass InSAR.

Up to now, the coherence magnitude estimation based
on Machine Learning has not been studied and published.
Applying ML in this estimation context is not straightforward.
The number and the domain of possible input processes is
infinite and it is not possible to train all input signals. It has
also not yet been shown that prior knowledge can be used to
support and improve the ML prediction,

Therefore, specific objectives of the article are summarized
as follows.

1) Provide the principle and methods of the ML estimation
framework,

2) Demonstrate the coherence magnitude estimation by
ML,

3) Demonstrate inclusion of prior information to support
the estimation,

4) Characterize the estimation for small sample sizes by
bias, standard deviation and root mean square error
(RMSE),

5) Check if this technique is suitable in terms of perfor-
mance for operational systems,

6) Compare the performance with the sample estimator but
also with the empirical Bayesian methods,

7) Check whether the implementation is independent of the
ML method used.

This article is organized as follows. Section II describes the
methods i.e. the principle and components of the developed
ML framework. Simulation results are provided for different
types of prior and sample sizes in Section III. This section
also includes a proof of concept using real Sentinel-1 data. In
Section IV, the characteristics of these methods are discussed.
Finally, Section V presents the conclusions.

II. METHODS

The variable xk,i = ak,i exp(jδk,i) denotes the single look
complex (SLC) SAR scene pixel with index k = 1 for the
primary and k = 2 for the secondary scene. i is the pixel index
within a statistically homogeneous area with N independent
and identically distributed (i.i.d.) samples. If the scattering
surface is rough with respect to the radar wavelength, the data
are modeled by a stationary complex circular Gaussian (CCG)
process as stated by Goodman [16] and Just and Bamler [15].

In practice, the sample coherence magnitude γ̂s is the uni-
versal coherence estimator for CCG signals and corresponds
according to Touzi et al. [18] to the MLE of the underlaying
coherence magnitude γ

γ̂se
jϕ̂s =

∑N
i=1 x1,i · x∗

2,i√∑N
i=1 |x1,i|2

√∑N
i=1 |x2,i|2

. (1)

The coherence magnitude has the domain {γ | 0 ≤ γ ≤ 1}.
This article intends to develop a new method for estimation

of the coherence magnitude γ̂ based on the random CCG
processes X1 and X2 with specific realizations x1 and x2

γ̂ =f(x1,x2)

=f(x1,i=1, x2,i=1, . . . , x1,i=N , x2,i=N ).
(2)

Fig. 1: Principle of the ML framework for coherence magni-
tude estimation.

The ML approach results in a non-parametric method. Be-
cause input samples are mapped to a continuous output value,
this ML task corresponds to the regression problem in contrast
to classification. Fig. 1 visualizes the basic principle and com-
ponents of the development. Initially, non-parametric estima-
tors f̂N (x1,i=1, x2,i=1, . . . , x1,i=N , x2,i=N ) are automatically
generated from simulations and by supervised learning for any
practically occurring number of samples N . In the operational
system, this estimator f̂N (.) is then used with N single look
i.i.d. interferometric samples.

It implies to reverse the typically present oversampling and
spectral weighting of the SAR data. This does not have to
be done individually per statistically homogeneous area, but
is better calculated only once for each SAR scene. Such
preprocessing into single look complex SAR data is not a
disadvantage of this technique in particular. It is also necessary
for all other coherence magnitude estimation methods. In
fact, all known estimators work with i.i.d. samples, where
independence implies zero autocorrelation of samples within
the primary and secondary channel. In case of autocorrelation,
the spatial arrangement of the samples (for InSAR on the 2D
grid) would have to be taken into account by the estimators. To
illustrate typical effective number of looks, Sentinel-1 acquired
with Interferometric Wide swath mode beam IW2 is chosen
as an example. An area of 5 azimuth times 4 range samples
corresponds to N = 9 and 6 azimuth times 7 range samples
reduce to N = 20 independent samples.

Both system components are described in the following.

A. Generation of Estimators

For all required sample sizes N , ML provides a representative
non-parametric model f̂N (.). That means, there is no assump-
tion about the function shape and the internal dependencies of
the extracted features. As a result, a previously unknown num-
ber of internal parameters is required to represent the model
and, accordingly, a lot of training data and computational effort
are necessary for the learning. However, this does not pose a
problem, since the corresponding data can be simulated in
practically any quantity and the theoretically infinite number
of possible variants of input data can be restricted in terms of
quantity.

1) Simulation: As pointed out by Goodman [16] and Just
and Bamler [15], we can limit ourselves to CCG signals for
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medium resolution SAR. Starting point is the 2 × 2 covari-
ance matrix Σ which describes the relation of the respective
CCG processes X1 and X2. It is defined by the simulation
parameters a1, a2, which are the CCG processes’ expected
amplitudes, and the complex coherence ρ = γejϕ0 . This term
is substituted into (3) and the coherence magnitude γsimu is
substituted for γ and is also used as the ML label for the
respective simulated data.

Σ = cov(X1,X2) =

(
(a1)

2 a1a2ρ
a1a2ρ

∗ (a2)
2

)
(3)

The matrix above contains the expected intensities on the
diagonal and the covariances on the off-diagonal. ϕ0 is the
true interferometric phase.

First of all, the square, positive definite and Hermitian
covariance matrix Σ is decomposed

Σ = AAH . (4)

The superscript H denotes the conjugate transpose of the com-
plex matrix. Practically, this operation can be performed using
singular value decomposition (SVD), Schur decomposition or
Cholesky decomposition.

The SVD
UWV = SVD(Σ) (5)

results in A = U
√
W , where

√
W denotes the element-by-

element square root of the diagonal.
The Schur decomposition produces an orthonormal matrix

Q and an upper triangular matrix T

QT = Schur(Σ). (6)

This gives A = Q
√
T , where

√
T is the element-wise square

root of all matrix entries in the complex domain.
With the Cholesky decomposition

LLH = CholeskyL(Σ), (7)

the product of a lower triangular L and its conjugate transpose
matrix LH arises. In this case A = L. In case, the library
provides the upper triangular matrix U such that

UHU = CholeskyU (Σ) (8)

then A = UH .
Next, a complex matrix Z ∈ C2×N of independent CCG

random variables

zk,i = Re(zk,i) + jIm(zk,i)

Re(zk,i) ∼ N (0, 1/
√
2)

Im(zk,i) ∼ N (0, 1/
√
2)

(9)

is created. N (0, 1/
√
2) denotes the normal distribution with

zero mean and standard deviation 1/
√
2. The simulated in-

terferometric data pair corresponds to the complex matrix
S ∈ C2×N calculated by

S =

(
x1

T

x2
T

)
=

(
x1,i

x2,i

)
= AZ. (10)

This principle of transforming the covariance matrix Σ into
an interferometric data pair S can be applied to the simulation
of InSAR data stacks. The dimensions of the covariance and

the CCG matrix Z need to be increased accordingly. For the
described framework, it is not necessary and interferograms
are simulated from independent 2×2 covariance matrices. All
three decompositions were implemented and finally the SVD
was used for the article.

2) Encoder: The encoder transforms the input data and has
two preprocessing functions: a) reduce redundancies and b)
convert the input into an advantageous data representation.

Ideally, the signal entering the ML training includes all
appropriate features and recognizable patterns, and is a data
representation without ambiguity or redundancy. This makes
the ML training algorithm more precise and computationally
efficient, and requires less computer memory.

a) Redundancy reduction: From the original simulation
input parameters (3) {a1 | 0 < a1 < ∞}, {a2 | 0 < a2 < ∞},
{γ | 0 ≤ γ ≤ 1} and {ϕ0 | −π < ϕ0 ≤ π} with their
unrestricted domains and the unlimited possible combinations,
we can see that there are an infinite number of possible input
data sets. Generating and training all this is not realistic. As
will be shown shortly, the expected channel amplitudes and the
expected interferometric phase cause redundancies in the sig-
nal representation. Indeed the correlation coefficient ρX1,X2

is independent of change of origin e.g. by real numbers b and
d and scale of the data e.g. by real numbers a and c

ρX1,X2 = corr(X1,X2) = corr(aX1 + b, cX2 + d). (11)

This means that by scaling the amplitudes

x1,i =
x1,i

max(|x1|)
, x2,i =

x2,i

max(|x2|)
for i = 1, . . . , N

(12)

the data are restricted without loss of information to a domain
{a1 | 0 < a1 ≤ 1}, {a2 | 0 < a2 ≤ 1} known to the ML
model.

Equation (1) shows that the coherence magnitude γ and the
interferometric phase ϕ0, which is optimally estimated by the
sample estimator ϕ̂s, are independent of each other. Hence,
assuming a stationary phase signal i.e. residual topography,
deformation and atmospheric phase screen are compensated,
the expected interferometric phase ϕ0 can be estimated from
the statistically homogeneous pixels (SHPs)

ϕ0 =arg(E{X1 ·X2
∗})

≈ϕ̂s = arg(

N∑
i=1

x1,i · x∗
2,i).

(13)

Since only the interferometric phase difference between each
i.i.d. sample is used, the expected value can be compensated
in the primary scene in advance

x1,i = x1,i · exp(−jϕ̂s). (14)

This transformation eliminates the phase ambiguities δk,i +
K2π and preserves the respective amplitude’s Rayleigh PDF
of the primary and secondary scene and the statistics of the
interferometric phase differences (except for the mean).

As a result of the amplitude scaling and interferometric
phase compensation, the number of possible input data has
now been significantly reduced.
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b) Data representation: The encoder converts the CCG
input data because the data representation has an impact
on the performance of the model. This is due to the fact
that there is practically no direct regression from the input
variables to the output value. Inside the ML model, attributes
that are not visible from the outside are calculated. This
internal automatic generation of features is manually sup-
ported by the encoding. Two examples for possible CCG data
representations are {Re(x1), Im(x1),Re(x2), Im(x2)} and
{|x1| , |x2| , arg(x1 x2

∗)}. Tests have shown that the latter
data representation, consisting of the sample amplitudes and
expected interferometric phase compensated phase differences,
is more advantageous than others. It is apparent that the data
dimension is reduced and irrelevant information is removed.
The data fully represent all required features and the ML
methods can use them directly.

3) ML Training: The ML training learns the features with
which the internal model is evaluated to return the coherence
magnitude estimate. According to James et al. [23], the general
form of ML regression is

γ̂ = f(.) + ϵ. (15)

ϵ is an inherent random error term and is named the irreducible
error. In this application, it results from the random sampling
and the limited sample size N but not from the noise in the
data. Practically, every sample is differently representative and
ϵ corresponds to unmeasured information which results in bias
and variance of the coherence magnitude estimate. Touzi et
al. [18] have proven that an unbiased estimator, which is a
function of the sample coherence magnitude, cannot be found.
It follows that the ML estimator will also have a bias and a
variance. In other words, ϵ is independent of the input data
x1, x2 and can only be mitigated by increasing the sample
size N reducing unmeasured information.

ML provides procedures for estimating f(.) based on train-
ing data and approximately represents it by f̂(.). Depending
on the ML method, f̂(.) is represented differently, such as a
Decision Tree, a Random Forest or a Neural Network. Accord-
ing to James et al. [23], the error from the approximation f̂(.)
of a particular ML method is termed reducible error. It can
be diminished by choosing an appropriate ML method and, if
used, suitable Neural Network layers as well as optimizing the
learning parameters such as the learning rate and the learning
iteration count. In this article, Gradient Boosted Trees ML is
implemented based on the XGBoost library with its C-API
developed by Chen and Guestrin [24], [25].

All possible CCG input processes must be simulated for the
ML training. To get as close to the real estimation scenario
as possible, the amplitudes of the primary and secondary
signals and the interferometric phases are modeled in such
a way that the encoder works as it will later. In this article,
the scenes’ expected amplitudes are simulated with uniform
likelihoods a1 ∼ U(0, 2) and a2 ∼ U(0, 2), and the expected
interferometric phase with ϕ0 ∼ U(−π, π). For the training
of an estimator, 108 independent interferograms are generated.
In the course of the ML learning, the parameters of the model
are tuned to perform best on the given training data. This
suggests to add prior knowledge on the underlaying coherence
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Fig. 2: Distribution of γsimu for the less strict prior; blue
graph: γmax = 0.3; orange graph: γmax = 0.6.

magnitude by adjusting the training data set. In doing so, the
fact that ML learns the model from the data is exploited.
Training data are generated with a number of observations
corresponding to the prior on the underlaying coherence. The
assumption is that the ML parameter tuning then works better
for these observed values than with the data, who has not or
rarely seen the training. A single parameter γmax is used to
model the prior. In the following, this parameter is specified
as a subscript at the respective method.

a) ML without prior (MLWP): Without prior informa-
tion, training data are generated with the straight forward char-
acteristic and γsimu is sampled from the uniform distribution
γsimu ∼ U(0, 1). With 108 simulated interferograms, about
106 samples are generated in an interval γsimu ± 0.005.

b) ML less strict prior (MLLSP): Figure 2 shows the
distribution of γsimu for the less strict prior. The imple-
mentation is based on the inverse cumulative distribution
function (CDF) sampling method. It provides one random
variate γsimu ∼ Pprior(γmax) from one random sample with
distribution u ∼ U(0, 1). The corresponding CDF is

CDF =

{
2γ

γmax+1 0 ≤ γ ≤ γmax

(γ−2)γ+γ2
max

γ2
max−1 γmax < γ ≤ 1.

(16)

This leads to the respective inverse CDF

CDF−1 ={
1
2 (γmaxu+ u) u ≤ 2γmax

γmax+1

1−
√
γ2
maxu− γ2

max − u+ 1 u > 2γmax

γmax+1 .

(17)

c) ML strict prior (MLSP): Figure 3 visualizes the
distribution of the underlaying coherence magnitude γ for
the strict prior. Consequently, the respective training data are
generated with γsimu sampled from the uniform distribution
γsimu ∼ U(0, γmax).

Practically, one ML model f̂N,p(.) is generated for each
prior type {p | MLWP,MLLSP γmax

,MLSP γmax
} with

every needed prior parameter {γmax | 0.1, 0.2, ..., 0.9}. The
utilized library XGBoost allows to persistently save each
model into a JSON file [24], [25] for later operational esti-
mation use.
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Fig. 3: Distribution of γsimu for the strict prior; blue graph:
γmax = 0.3; orange graph: γmax = 0.6.

B. Estimation of Coherence Magnitude

N interferometric samples are input to the operational co-
herence magnitude estimation. These data are transformed
according to (12) and (14). I.e., 3 × N real values, en-
coded by { |x1|

max(|x1|) ,
|x2|

max(|x2|) , arg(x1 x2
∗ exp(−jϕ̂s)},

enter the ML prediction model f̂N,p(.). Once again, all
phases are the expected interferometric phase compensated
phase differences. The model is extremely fast evaluated
because no iteration, numeric integration or Bootstrapping
is needed. The estimated coherence magnitude γ̂p with
{p | MLWP,MLLSP γmax

,MLSP γmax
} is deterministic

i.e. one and the same input data result in one and the same
estimate.

III. RESULTS

In this section the estimation characteristics obtained with
Gradient Boosted Trees ML implemented using the XGBoost
library [24], [25] are presented. Based on the fact that the
estimation from a small sample size is the critical problem,
priority is put on such test cases i.e. N = 2, N = 3 and
N = 9.

The results show, the intuitively introduced Bayesian prin-
ciple works. Any likelihood of prior can be implemented. In
contrast to the empirical Bayesian approach [22], no insoluble
integral has to be solved and replaced by computationally
ineffective numerical integration.

In the following, the characteristics of the estimators
are compared with each other and the universally applica-
ble sample estimator (1) is taken as the reference. Gener-
ally, the bias γbias = E{γ̂∗ − γtrue}, the standard devia-
tion γσ =

√
E{(γ̂∗ − E{γ∗})2} and the RMSE γrmse =√

E{(γ̂∗ − γtrue)2} for {γ̂∗|γ̂s, γ̂MLWP , γ̂MLLSP , γ̂MLSP }
are relevant quality criteria of estimators. For the coherence
magnitude estimation, these properties are functions of the un-
derlaying true coherence magnitude γtrue. This is the reason,
the parameters above are estimated 101 times for each plot
with {γtrue | 0, 0.01, ..., 1}. 106 simulations are performed for
each data point γtrue and each method is applied on the one
and the same data set per analysis. For the test cases shown
below, the prior parameter γmax = 0.6 is chosen because it

is a typical value in SAR interferometry. In the plots below,
the MLSP curves end at an underlaying coherence of 0.6. It is
apparent, a strict prior assumes zero probability outside of this
range. However, it should be noted that the MLSP0.6 estimator
provides also estimates outside of this strict range.

A. Test Case N = 2 Samples

The bias compared in Fig. 4a is reduced for small coherences
by all ML methods. For a zero coherence, and compared to
the sample estimator γ̂s, the MLWP reduces the bias from
0.6664 to 0.4374 i.e. by 34.4%, the MLLSP0.6 reduces the
bias to 0.3860 i.e. by 42.1%, and the MLSP0.6 reduces the
bias to 0.2967 i.e. by 55.5%. For the sample estimator, the
bias becomes zero at an underlaying coherence of one. Not
surprisingly, all newly developed ML estimators, are bias free
at much smaller coherences. However, this is achieved at the
expense of a larger bias for higher underlaying coherence
magnitude values.

The standard deviation γσ is visualized in Fig. 4b. Again,
the zero coherence is taken as an example. Compared to the
sample estimator the MLWP reduces the standard deviation
from 0.2358 to 0.1323 i.e. by 43.9%, the MLLSP0.6 reduces it
to 0.0954 i.e. by 59.5%, and the MLSP0.6 reduces the standard
deviation to 0.0545 i.e. by 76.9%.

The RMSE best describes the estimator performance as it
includes the bias and the variance of the estimators γrmse =√
γ2
bias + γ2

σ . The comparison of the RMSE in Fig. 4c con-
firms the observation from the empirical Bayesian coherence
magnitude estimation [22] that the more information is used
and the stricter the general prior, the more accurate the
estimate will be. Compared to the conventional sample esti-
mator, MLWP is more efficient for all underlaying coherence
magnitudes up to 0.68, the MLLSP0.6 method up to 0.65 and
the MLSP0.6 estimator up to 0.58.

B. Test Case N=3 Samples

The properties and principles from the test case N = 2 are
also confirmed in this configuration. The comparison of the
bias (γbias) is visualized in Fig. 5a, of the standard deviation
(γσ) in Fig. 5b and of the RMSE (γrmse) in Fig. 5c. For a zero
coherence magnitude, the bias related to the sample estimator
improves from 0.5333 to 0.3852 by 27.8% for MLWP, to
0.3572 by 33.0% for MLLSP0.6 and to 0.2905 by 45.5% for
MLSP0.6. The standard deviation is reduced from 0.2211 to
0.1528 i.e. by 30.9% using MLWP, to 0.1285 i.e. by 41.9%
with MLLSP0.6 and to 0.08116 i.e. 63.3% with MLSP0.6.
Compared to the conventional sample estimator, MLWP is
more efficient for all underlaying coherence magnitudes up
to 0.62, the MLLSP0.6 method up to 0.61 and the MLSP0.6
estimator up to 0.55.

C. Test Case N=9 Samples

As the performance of the sample estimator improves with
the number of samples, it can be expected that advantages are
reduced for other methods. The visualizations of the bias in
Fig. 6a, of the standard deviation in Fig. 6b and of the RMSE
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(a)

(b)

(c)

Fig. 4: Characteristic of estimators for N = 2 samples;
gray: sample estimator (MLE), green: MLWP, blue: MLLSP0.6
and orange: MLSP0.6. (a) Estimation bias γbias. (b) Standard
deviation γσ . (c) Root mean square error γrmse.

in Fig. 6c confirm this expectation. Accordingly, the reduction
in bias is less pronounced. At zero coherence magnitude, the
sample estimator has a bias of 0.30. The MLWP reduces
the estimation bias by 13.4% to 0.26. Also, the prior has

(a)

(b)

(c)

Fig. 5: Characteristic of estimators for N = 3 samples;
gray: sample estimator (MLE), green: MLWP, blue: MLLSP0.6
and orange: MLSP0.6. (a) Estimation bias γbias. (b) Standard
deviation γσ . (c) Root mean square error γrmse.

less effect on the bias mitigation compared to test cases
with fewer samples. The MLLSP0.6 improves the bias by
14.0% to 0.2576 and the MLSP0.6 by 18.4% to 0.2444. A
similar characteristic is observed for the standard deviation.
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(a)

(b)

(c)

Fig. 6: Characteristic of estimators for N = 9 samples;
gray: sample estimator (MLE), green: MLWP, blue: MLLSP0.6
and orange: MLSP0.6. (a) Estimation bias γbias. (b) Standard
deviation γσ . (c) Root mean square error γrmse.

For zero coherence, the standard deviation of MLWP even
increases by 5.9% from 0.1463 to 0.1548. Some prior helps
to mitigate the random variation. The MLLSP0.6 lessens the
standard deviation by 4.9% to 0.1390, and the MLSP0.6 by

26.5% to 0.1075. Nevertheless, the ML algorithms outperform
the sample estimator for small coherence magnitude values.
The MLWP is more efficient for all underlaying coherence
magnitudes up to 0.43, the MLLSP0.6 method up to 0.47 and
the MLSP0.6 estimator up to 0.48.

D. Sentinel-1 Application Demonstration

As a proof of concept, the estimator prototype is demonstrated
using real Sentinel-1 data in Interferometric Wide swath mode.
The primary scene has the orbit number 30741 and was
acquired on January 10, 2020. After 12 days, the secondary
scene was recorded. Their orbit number is 30916 and the
observation geometry is characterized by an effective baseline
of about 27m. Without going into details, the oversampling
in the input data is reversed and the estimation window of
3 × 3 samples in range and azimuth (i.e. N = 9) overlaps
from sample to sample.

Figure 7a visualizes the test case with 512 × 512 i.i.d.
samples by the radar backscatter amplitude. The coherence
magnitude from the sample estimator is visualized in Fig.
7b. Using identical estimation windows, the respective ML
result is shown in Fig. 7d. In this example, the ML coherence
magnitude is estimated locally adaptive with respect to the
prior from MLWP, MLLSP0.6, MLLSP0.4 or MLSP0.4. It can
be seen that the estimation performance now depends not only
on the window size but mainly on the prior and its strictness.

To give an intuitive idea of the effect of different priors
and various parameters, Fig. 7c visualizes a composition of
coherence estimates. In this figure from left to right, the result
from the sample estimator, MLWP, MLLSP0.6, MLLSP0.4,
MLSP0.6, and MLSP0.4 can be compared. Similar coherence
magnitudes are observed for all but the last two columns. It
follows that the less strict prior can robustly cope with an
underlying coherence greater than the prior parameter γmax.

IV. DISCUSSION

In the section above, test cases using Gradient Boosted Trees
are presented. The question arises whether other ML methods
provide similar results. This is the reason, additional proto-
types for the coherence magnitude estimation based on Neural
Networks and Random Forests are assessed. By similar graphs,
Fig. 8 demonstrates for the test case with N = 3 samples
that the developed framework is robust with respect to a
particular ML method. However, in the course of development
it turned out that the encoder has a significant influence on
the estimation performance. To illustrate this, Fig. 9 compares
the RMSE for N = 3 samples with an unfavorable encod-
ing {Re(x1), Im(x1),Re(x2), Im(x2)} between Gradient
Boosted Trees ML, Neural Network ML and Random Forrest
ML. The comparison with Fig. 8 shows that the ML methods
have different robustness with respect to the encoding of the
input data. For this application, Neural Networks are able to
handle complex input data without encoding.

Unexpectedly, Fig. 5c shows a similarity of the ML methods
in the RMSE characteristics with the empirical Bayesian
methods [22, Fig. 8 (f)]. Some comparative plots will show
which method performs better in terms of RMSE. The test
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(a) (b) 0 1

(c) 0 1 (d) 0 1

Fig. 7: Sentinel-1 test case with N = 9. (a) Radar backscatter amplitude. (b) Coherence magnitude from sample estimator (1).
(c) Composite of coherence estimates from sample estimator, MLWP, MLLSP0.6, MLLSP0.4, MLSP0.6, MLSP0.4 from left to
right. (d) ML coherence magnitude estimated locally adaptive from MLWP, MLLSP0.6, MLLSP0.4 or MLSP0.4.

case with N = 3 serves as a demonstration. First, Fig.
10 compares the Bayesian and the ML estimation without
prior. Second, Fig. 11 benchmarks the Bayesian and the ML
estimation with less strict prior γmax = 0.6, and third, Fig.
12 visualizes the Bayesian and the ML estimation with strict
prior γmax = 0.6. The examples demonstrate, ML improves
the coherence magnitude estimation compared to the empirical
Bayesian estimation for small coherences and small samples.
In the field of SAR interferometry, the precise estimation of
small coherence magnitudes is the challenge. This is one of

the reasons, the newly developed ML methods are recom-
mended for operational systems. Another is the computational
efficiency compared to the empirical Bayesian estimation. On
a laptop, the ML prototypes perform 105 estimates in less than
10 seconds. In contrast, the empirical Bayesian methods need
more than half an hour for the same number of estimates. The
computing performance is achieved at the expense of a high
training effort. Each estimator took three days to train on a
small laptop.

Above, the estimation characteristics are demonstrated for
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Fig. 8: Comparison of RMSE for N = 3 samples between
Gradient Boosted Trees ML (gray), Neural Network ML
(green), Random Forrest ML (blue).

Fig. 9: Comparison of RMSE for N = 3 samples with unfavor-
able encoding {Re(x1), Im(x1),Re(x2), Im(x2)} between
Gradient Boosted Trees (GBT) ML in gray, Neural Network
(NN) ML in green and Random Forrest (RF) ML in blue.

small sample sizes. For N = 15, the RMSE of the ML
methods is still better compared to the sample estimator. The
respective test case is visualized in Fig. 13. The MLWP is more
efficient for all underlaying coherence magnitudes up to 0.40,
the MLLSP0.6 method up to 0.44 and the MLSP0.6 estimator
up to 0.46. However, the test case N = 30 demonstrates in
Fig. 14, only the MLSP0.6 performs better than the sample
estimator. As indicated by Fig. 14 (c) and (f) in [22], the em-
pirical Bayesian estimators are recommended for this test case.
The plots show that a hybrid approach has to be developed in
order to obtain the best estimate for an operational application.
Such an approach should include the sample estimator, the ML
methods, and the Bayesian methods [22]. As pointed out by a
reviewer, the respective coherence magnitude estimate would
be always better or equal to the sample estimator in terms of
RMSE.

One reviewer argued that N = 2 is too low a sample
count. It is a well-known fact; the concept of coherence is

Fig. 10: Comparison of RMSE between estimation by expected
a posteriori (EAP) in gray and MLWP in green i.e. both
without prior for N = 3 samples.

Fig. 11: Comparison of RMSE between estimation by expected
a posteriori (EAPLSP0.6) in gray and MLLSP0.6 in green i.e.
both with less strict prior for γmax = 0.6 and N = 3 samples.

not relevant to individual samples requiring N > 1. The
reason is that the coherence is a statistical quantity since an
expected value has to be calculated as indicated by (3) in
[22]. Practically, two samples are sufficient for the expected
value to be meaningful. For this reason, the sample estimator
(1) can be evaluated for N = 2 samples. Accordingly, if (1)
can be evaluated meaningfully for two samples, then it can
also be predicted by ML and is demonstrated in the section
above. For the Bayesian estimation [22], it was surprising that
N = 2 works because the used conditional probability density
function (pdf) ([22, equation 12]) was reported by Touzi [17]
to be valid for N > 2. The newly developed ML method
is non-parametric and does not depend on this pdf. As a
consequence, this restriction is not relevant. Interestingly, the
practical demonstration of the empirical Bayesian estimator in
[22] has shown that the conditional pdf also works for N = 2.

As already stated in [22] for the empirical Bayesian tech-
niques, the demonstrated ML methods support typical InSAR
scenarios. First, the MLWP improves the estimation without
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Fig. 12: Comparison of RMSE between estimation by expected
a posteriori (EAPSP0.6) in gray and MLSP0.6 in green i.e. both
with strict prior for γmax = 0.6 and N = 3 samples.

Fig. 13: Comparison of RMSE for N = 15 samples between
sample estimator (gray), MLWP (green), MLLSP0.6 (blue) and
MLSP0.6 (orange).

prior knowledge and is generally applicable. Second, MLLSP
and MLSP include an assumption on the maximum coherence
magnitude γmax of the underlaying true coherence. Such infor-
mation is available in SAR interferometry based on stacks of
interferograms. For example, γ̂max can be estimated from an
initial coherence matrix [3, Fig. 5] which can straight forward
be converted into the best possible coherence as a function of
acquisition time difference. Depending on the γ̂max accuracy
and the likelihood that the underlaying coherence is above
γ̂max, the less strict or strict prior should be selected. The
strict prior limits the estimates inside the assumed range and
the less strict prior favors estimates in this range. In principle,
any shape of prior can easily be implemented in the developed
framework.

Practically, the greatest gain in precision is achieved with
the strict prior. Not surprisingly, the more restrictive the
prior, the better the estimation performance. Fig. 15 compares
the estimators MLSP0.6 and MLSP0.4 using N = 9 as an
example. It shows that the strict prior with a small γmax should

Fig. 14: Comparison of RMSE for N = 30 samples between
sample estimator (gray), MLWP (green), MLLSP0.6 (blue) and
MLSP0.6 (orange).

Fig. 15: Comparison of RMSE for N = 9 samples between
sample estimator (gray), MLSP0.6 (green) and MLSP0.4 (blue).

always be preferred. However, a reliable γ̂max value for the
application is crucial.

V. CONCLUSION

The developed ML coherence magnitude estimators are suit-
able and recommended for operational InSAR systems. First,
they improve the estimation performance compared to the
conventional sample estimator and to the empirical Bayesian
estimators [22]. Especially, the estimation of small coherence
magnitudes from a small sample is improved. Second, the
framework supports any shape of Bayesian prior on the under-
laying coherence magnitude. In this manuscript, the Bayesian
prior is modeled with a single parameter (γmax). Less strict
and strict assumptions on the range of the underlaying coher-
ence magnitude can be modeled and are demonstrated. Both
types of prior correspond to typical InSAR scenarios. Third,
the estimation is computationally extremely fast evaluated
because no iteration, numeric integration or Bootstrapping is
needed. Forth, the implementation is straight forward because
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of the availability of many ML libraries. In this manuscript,
the implementation utilizes XGBoost developed by Chen and
Guestrin [24]. If a suitable encoder is used, the estimation
results are independent of the ML method used.

A limitation of the newly developed ML methods is that the
performance improves only for low coherences and for sample
sizes N < 30.

The developed estimators are not limited to InSAR, but are
generally applicable to coherence estimation problems from
CCG processes.
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