Jahan, Kanwal and Lähns, Alexander and Baasch, Benjamin and Heusel, Judith and Roth, Michael (2023) Rail Surface Defect Detection and Severity Analysis using CNNs on Camera and Axle Box Acceleration Data. In: IAI2023 - 7th International Congress and Workshop on Industrial AI and eMaintenance. IAI2023 - 7th International Congress and Workshop on Industrial AI and eMaintenance, 2023-06-13 - 2023-06-15, Luleå, Sweden.
![]() |
PDF
1MB |
Abstract
Rail surface defect detection is a relevant problem in the field of data-driven railway maintenance. Artificial intelligence and neural networks (NN) for axle box acceleration (ABA) or camera data show great potential for defect detection and classification. However, a sufficient amount of labeled training data is required, all the more if the defect severity is to be estimated. A unique dataset of time-synchronized ABA and camera data is employed that contains labeled defect instances. For the image analysis, RetinaNet as a single-stage object detector (with the backbone of ResNet-50 and a feature pyramid network) is used to achieve high classification performance for the two most common rail surface defects (squat and corrugation). Additionally, a machine learning-based method on ABA data to estimate defect severity levels (low, medium, heavy) is proposed. False positives are detected in the original labels by both classifiers during evaluation. The inspection of the false positives in image data reveals that defects have been overlooked in the initial labeling. The insights of this work help to reduce the dependency on labeled data by using only a few labeled samples and by exploiting complementary data sources instead of increasing the number of labeled instances.
Item URL in elib: | https://elib.dlr.de/194005/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Rail Surface Defect Detection and Severity Analysis using CNNs on Camera and Axle Box Acceleration Data | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||
Journal or Publication Title: | IAI2023 - 7th International Congress and Workshop on Industrial AI and eMaintenance | ||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Deep learning, Convolutional neural network, Time-synchronized dataset, Supervised learning, Severity analysis, Rail surface defects, Squats, Corrugation | ||||||||||||||||||||||||
Event Title: | IAI2023 - 7th International Congress and Workshop on Industrial AI and eMaintenance | ||||||||||||||||||||||||
Event Location: | Luleå, Sweden | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 13 June 2023 | ||||||||||||||||||||||||
Event End Date: | 15 June 2023 | ||||||||||||||||||||||||
Organizer: | The Division of Operation and Maintenance Engineering, Luleå University of Technology | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||
HGF - Program Themes: | Rail Transport | ||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||
DLR - Program: | V SC Schienenverkehr | ||||||||||||||||||||||||
DLR - Research theme (Project): | V - TraCo - Train Control and Management | ||||||||||||||||||||||||
Location: | Berlin-Adlershof , Braunschweig | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Transportation Systems > Information Gathering and Modelling, BA Institute of Transportation Systems > Information Gathering and Modelling, BS | ||||||||||||||||||||||||
Deposited By: | Baasch, Dr. Benjamin | ||||||||||||||||||||||||
Deposited On: | 11 Dec 2023 14:50 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page