Rail surface defect detection and severity analysis using CNNs on camera and axle box acceleration data

Kanwal Jahan, Alexander Lähns, <u>Benjamin Baasch</u>, Judith Heusel, Michael Roth German Aerospace Center (DLR) - Institute of Transportation Systems

Motivation

- Infrastructure accounts for approximately one-third of the railway's operating costs.
- Significant amount is related to labor-intensive maintenance.

 Ad hoc interventions are needed when faults occur → costly and disruptive Inspection is carried out by dedicated inspection cars or by track workers (foot patrols)

 Manual assessment of inspection data is time-consuming and prone to human errors.

- Reduction of maintenance costs through digitalization and automation
- LCC reduction through condition-based maintenance of railway assets and continuous improvement of components/maintenance schedules
- Operational reliability increase (less service disruption)
- Using vehicle-borne sensor data for fast and seamless infrastructure monitoring (use of in-service vehicles where possible)

Automatic anomaly detection and diagnosis algorithms to allow discovery of issues in a faster way

Rail Surface Defects

- Head checks
 - Initially small and fine cracks
 - Grow down into the rail
- Squats:
 - horizontal crack below the rail surface
 - produce surface depression and widening of the running band

Both types of defects can lead to spalling or rail break.

R. Lewis and U. Olofsson, Eds., *Wheel-rail interface handbook*. Boca Raton, Oxford: CRC Press; Woodhead Pub., 2009.

- Corrugation:
 - Quasi-periodic irregularity that appears on the running surface of rails

SIM - Switch Inspection & Measurement Wagon (Eurailscout)

- Multiple line-scan cameras provide multi-view video stream of the rails.
- Three-component (x, y, z) axle box accelerometers (ABA) on each side of the axle measure the dynamic vehicletrack interaction.

Multi-Sensor Classification Approach

Annotated Rail Surface Defects

- a) Head check
- b) Stud
- c) Corrugation
- d) Others
- e) Heavy Squat
- f) Medium Squat
- g) Mild Squat

ABA Classifier

- Goal: Classification of defects' severity level [intact, low, medium, high]
- Pre-processing:
 - Time series is divided in windows of 1,000 samples.
 - Labels are extracted from image bounding boxes and assigned to each of the windows.
 - Data that contain welds and joints are excluded.

Fully convolutional network for ABA based detection and severity classification

- Two (or more) consecutive Networks
 - 1. Binary classification for defect detection
 - 2. Severity level classification of detected defects

ABA Classifier - Defect Detection Results

Score	Intact	Defect
Recall TP/(TP+FN)	76 %	84 %
Precision TP/(TP+FP)	82 %	78 %
FDR FP/(FP+TP)	18 %	22 %
F1-Score 2TP/(2TP+FP+FN)	79 %	81 %

- 84 % of labelled defects detected
- 18 % of the detected defects are false alarms

Score	Intact	Low	Medium	High
Recall TP/(TP+FN)	76 %	69 %	82 %	55 %
Precision TP/(TP+FP)	82 %	74 %	64 %	21 %
FDR FP/(FP+TP)	18 %	26 %	36 %	79 %
F1-Score 2TP/(2TP +FP+FN)	79 %	71 %	72 %	31 %

82 % detected defects are classified correctly in terms of severity level

Architecture of RetinaNet

- ResNet-50 as bottom-up pathway
- Feature Pyramid Network used for top-down pathway
- Transfer Learning \rightarrow Weights pretrained on COCO data set

Classification Results for Squats

- 71 % of labelled squats detected
- 24 % of squat detections are false alarms
- Some false alarms indicate misslabelled true defects.

Classification Results for Corrugation

- The width-to-height ratio of all the labels is brought to 1:2 for the image classifier.
- 67 % of labelled corrugation detected
- High number of missed corrugation is related to subdivision of instances into multiple labels

No false alarms encountered

- Independent CNN-based classifiers for image and ABA data have been trained and tested on manually labelled data.
- Considering the small amount of labelled data, a good performance for both classifier could be achieved.
- Enhancing the available labeled data and performing iterative training of the network is expected to improve performance significantly.
- Detection of overlooked defects shows potential of using neural networks to produce sudo labels instead of only relying on manual data inspection.
- In the future, a single network fusing both data sets shall be trained and evaluated.

