Rewicki, Ferdinand und Denzler, Joachim und Niebling, Julia (2023) Is It Worth It? Comparing Six Deep and Classical Methods for Unsupervised Anomaly Detection in Time Series. Applied Sciences. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/app13031778. ISSN 2076-3417.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://www.mdpi.com/2076-3417/13/3/1778
Kurzfassung
Detecting anomalies in time series data is important in a variety of fields, including system monitoring, healthcare and cybersecurity. While the abundance of available methods makes it difficult to choose the most appropriate method for a given application, each method has its strengths in detecting certain types of anomalies. In this study, we compare six unsupervised anomaly detection methods of varying complexity to determine whether more complex methods generally perform better and if certain methods are better suited to certain types of anomalies. We evaluated the methods using the UCR anomaly archive, a recent benchmark dataset for anomaly detection. We analyzed the results on a dataset and anomaly-type level after adjusting the necessary hyperparameters for each method. Additionally, we assessed the ability of each method to incorporate prior knowledge about anomalies and examined the differences between point-wise and sequence-wise features. Our experiments show that classical machine learning methods generally outperform deep learning methods across a range of anomaly types.
elib-URL des Eintrags: | https://elib.dlr.de/193733/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Is It Worth It? Comparing Six Deep and Classical Methods for Unsupervised Anomaly Detection in Time Series | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 30 Januar 2023 | ||||||||||||||||
Erschienen in: | Applied Sciences | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.3390/app13031778 | ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
Name der Reihe: | Special Issue "Unsupervised Anomaly Detection" | ||||||||||||||||
ISSN: | 2076-3417 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | anomaly detection; time series; machine learning; deep learning; benchmark | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - EDEN ISS Follow-on | ||||||||||||||||
Standort: | Jena | ||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||
Hinterlegt von: | Rewicki, Ferdinand | ||||||||||||||||
Hinterlegt am: | 14 Feb 2023 14:00 | ||||||||||||||||
Letzte Änderung: | 14 Feb 2023 14:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags